PLRISC-\/°

Unformatted Trace & Diagnostic Data
Packet Encapsulation for RISC-V

Authors: Iain Robertson

Version v1.0, 2024-07-05: Ratified



Table of Contents

Change Log
Copyright and license information
Contributors
1. Introduction
1.1. Glossary
2. Packet Encapsulation
2.1. Normal Encapsulation Structure
2.1.1. Header
2.1.2. srcID
2.1.3. Timestamp
2.1.4. Payload
2.1.5. Packet Length
2.2. Null Encapsulation
2.3. Synchronization
3. Packet Encapsulation for E-Trace
3.1. srcID
3.2. timestamp
3.3. type
3.4. Synchronization

© © © © 00 3 9 o0 o o0 U U1 U b b w N

—
(e}



Change Log

PDF generated on: 2024-07-05 15:21:36 UTC



Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License
(CC-BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.


https://creativecommons.org/licenses/by/4.0/

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

e Tain Robertson (Siemens) <iain.robertson@siemens.com> - author

¢ Paul Donahue (Ventana) - reviews

Michael Schleinkofer (Lauterbach) - reviews

* Beeman Strong (Rivos) - reviews

Robert Chyla (MIPS) - reviews

Ved Shanbhogue (Rivos) - reviews


mailto:iain.robertson@siemens.com

Chapter 1. Introduction

The Efficient Trace for RISC-V (E-trace) standard defines packet payloads for instruction and data
trace but does not fully define how this should be encapsulated into fully formed packets for
transport, nor how instruction and data trace should be differentiated. Chapter 7 gives some
illustrative examples but this is insufficiently detailed and informative only.

Although the primary motivation for developing this standard was to define an encapsulation
format for E-Trace packets that allows tools to parse and decode them in a standard manner, the
encapsulation format defined in this document is agnostic to the packet payload structure and
meaning and so can be used for any kind of unformatted data. In addition to E-trace, it could also
be used for a wide variety of other uses, for example: performance counter metrics, trace or other
diagnostic data from a bus fabric monitor or on-chip logic analyser.

It is not suitable for data that has already been formatted into packets, such as N-Trace, which
inserts a 2-bit MSEO formatting code into each byte.

This specification defines an encapsulation format suitable for use with a variety of transport
mechanisms, including but not limited to AMBA Advanced Trace Bus (ATB) and Siemens' Messaging
Infrastructure.

Examples of how trace packets can be routed for transport is given in the 'Trace Components'
subsection of the RISC-V Trace Control Interface Specification.

1.1. Glossary

* ATB - Advanced Trace Bus, a protocol described in ARM document IHIO032B;
» E-Trace - Abbreviation for Efficient Trace for RISC-V;

* PIB - Pin Interface Block, a parallel or serial off-chip trace port feeding into a trace probe, as
defined in the RISC-V Trace Control Interface Specification;

* N-Trace - Abbreviation for RISC-V N-Trace (Nexus-based trace) Specification

* Trace Encoder - Hardware module that accepts execution information from a hart and
generates a stream of trace packets;

» TFP - Trace Formatter protocol, a trace framing protocol described in ARM document IHIO029E.
Also adopted by MIPI as Trace Wrapper Protocol (TWP);

* TWP - See TFP.


https://github.com/riscv-non-isa/riscv-trace-spec/releases/download/v2.0rc2/riscv-trace-spec.pdf
https://github.com/riscv-non-isa/tg-nexus-trace/blob/master/docs/RISC-V-Trace-Control-Interface.adoc
https://github.com/riscv-non-isa/riscv-trace-spec/releases/download/v2.0rc2/riscv-trace-spec.pdf
https://github.com/riscv-non-isa/tg-nexus-trace/blob/master/docs/RISC-V-Trace-Control-Interface.adoc
https://github.com/riscv-non-isa/tg-nexus-trace/blob/master/docs/RISC-V-N-Trace.adoc

Chapter 2. Packet Encapsulation

Two types of encapsulation are defined: normal and null. A transmitted stream of encapsulated
packets comprises a mixture of normal and null packets. Each packet is atomic, and must be
transmitted in its entirety before another packet can be sent.

2.1. Normal Encapsulation Structure

The normal encapsulation structure is comprised of four field-groups as shown in Table 1. In this
and the following tables, the field-groups and fields are listed in transmission order: the uppermost
field-group or field in a table is transmitted first, and multi-bit fields are transmitted least
significant bit first.

Table 1. Encapsulation Field Groups

Group Name #Bits Description

header 8 Encapsulation header. See Section 2.1.1.
srcID 0-16 Source ID. See Section 2.1.2.

timestamp T*8 Time stamp. See Section 2.1.3.

payload 1-248 Packet payload. See Section 2.1.4.

The groups are defined in the following sections:

2.1.1. Header

The header is a single byte comprising the fields defined in Table 2.

Table 2. Header Fields
Field Name # Bits Description

length 5 Encapsulated payload length. A value of L indicates an L byte payload.
Must be > 0 - see Section 2.2.

flow 2 Flow indicator. This can be used to direct packets to a particular sink in
systems where multiple sinks exist, and those sinks include the ability to
accept or discard packets based on the flow value.

extend 1 Indicates presence of timestamp when 1. Must be 0 if timestamp width is
0.



2.1.2. srcID

The srcID field identifies the source of the packet. It can be between 0 and 16 bits in length. This
length must be fixed and discoverable for a given system.

The srcID may be omitted (i.e. zero bits in length) if there is only one source in the system, or if the
transport scheme includes a sideband bus for the source ID (for example, ATB).

When present, an 8-bit srcID will be sufficient for most use cases, and is simplest in terms of
determining the packet length, keeping all field groups aligned to byte boundaries. However, the
length of the field can be reduced to improve efficiency for small systems, or increased if required
for larger systems. This is explained in more detail in Section 2.1.5.

2.1.3. Timestamp

The timestamp field provides a means to include time information with every packet. It is included
in the encapsulation if header.extend is 1. When included, the timestamp must be T bytes in
length. The length must be discoverable, and fixed for a given system.

Timestamps may be omitted either because time is not of interest to the user, or if time information
is already included within the encapsulated payload.

2.1.4. Payload

The encapsulation payload can be up to 248 bits (31 bytes) in length, and comprises the fields
shown in table Table 3.

Table 3. Payload Fields
Field Name # Bits Description

type >0 Packet type. May be eliminated (i.e. width set to 0) for sources with only
one packet type. Length must be fixed for a given srcID, and discoverable
if > 0.

trace_payload <R Packet payloads such as those defined for E-Trace.
Maximum value of R is defined as 248 - Y - srcID%8, where Y is the length
of the type field. See Section 2.1.5 for details of the relationship between
srcID and payload length.



2.1.5. Packet Length

Encapsulated packets are a number of whole bytes in length, the exact number depending on the
sizes of the srcID, timestamp (if present) and header.length:

Packet length =1 + S + (T * header.extend) + header.length
S and T are discoverable constants; S is the number of whole bytes of srcID: int(#bits(srcID)/8).

For the case where the size of srcID is a multiple of 8 bits, header.length is simply the number of
bits of payload rounded up to the nearest multiple of 8 and expressed in bytes:

header.length = ceiling(#bits(payload)/8)

However, if the srcID is not a multiple of 8 bits the remaining srcID bits not accounted for by 'S' are
instead included when determining the value of header.length. Thus the more general definition
for any srcID size is:

header.length = ceiling((#bits(payload) + #bits(srcID)%8)/8)

In this way, the maximum payload length is reduced by up to 7 when the srcID is not a multiple of 8
bits.

In cases where the number of bits of payload + srcID is not a multiple of 8, some padding bits are
required. These must be placed in the most significant bits of the final byte of the packet. Their
value is "don’t care", but they must not "leak" information (for example, the previous contents of an
intermediate buffer that may relate to a different trace session which the current recipient of trace
is not authorised to receive).

2.2. Null Encapsulation

For normal encapsulation, the header.length field is at least 1, and the overall length of the
encapsulated packet will be at least 2 bytes (header plus 1 byte of payload).

A null packet is specified as consisting exclusively of one header byte with its length field set to
zero, explicitly indicating the packet’s total size as one byte. The extend field is used to distinguish
2 different types of null packet, which are defined as follows:

o extend = 0: null.idle

» extend = 1: null.alignment

Usually, nullidle will be used. nullalignment is used for synchronization, as described in the
following section.

Insertion of null packets typically occurs at a trace sink where there are no sideband signals
accompanying the data stream to identify valid data. Packets emitted from a trace source are
generally transported over some form of on-chip transport (e.g. ATB) that includes sideband
signalling to indicate when data is valid. In this situation when there is no data to send, valid is
simply deasserted. That said, the flow field definition in null packets is unchanged, so null packets
can be routed from a trace source to a specific sink if required. When generated at a sink, the flow



field value is unimportant and is typically 0. If the sink is generating a bit stream (i.e. the byte
boundaries are not inherently known to the recipient) then the flow field must be zero in all null
packets within the generated bitstream.

2.3. Synchronization

In a data stream comprised of packets, it’s a requirement to be able to determine where packets
start and end, when starting from an arbitrary point, without knowledge of the full packet history.
This can be achieved by inserting a synchronization sequence into the packet stream. This
sequence is comprised of a sufficiently long sequence of null packets.

A 'null’ byte is defined as a byte with the 5LSBs all zero, which may be a null packet, or may be part
of a normal packet. The longest run N of ‘null’ bytes possible within a normal packet is:

N=31+T+ S (see Section 2.1.3 and Section 2.1.5 for definitions of T and S respectively)

Therefore, in a sequence of N or more ‘null’ bytes, the first N 'null' bytes may actually be part of a
packet. However, any 'null' bytes after this must be null packets, and the 1st non-null byte seen after
this must therefore be the 1st byte of a normal packet.

For unframed data streams such as PIB, a null.alignment packet must be transmitted as the final
null before a normal packet. Strictly speaking this is necessary only if the data stream is sent via an
interface less than 8 bits wide, but for simplicity this is mandatory for any width. The single 1 at the
end of this sequence uniquely identifies the byte boundary, and what follows as the start of a
packet. For example, for two normal packets with M nulls between them, this would comprise M-1
nullidles and 1 null.alignment (M > 0).

For framed data streams which incorporate synchronization information in their own framing
such as MIPI TWP (aka ARM Trace Formatter Protocol) or USB there is no requirement to include
null.alignment packets.

The synchronization requirements are summarized in the following rules:

* A synchronization sequence must have a length of N+1 bytes (N defined above), comprising:

o For unframed data streams, N consecutive nullidle packets, directly followed by one
null.alignment packet;

o For framed data streams, N consecutive null.idle packets, directly followed by one null.idle or
null.alignment packet.

Synchronization sequences are typically inserted periodically. In addition, a sufficiently long run of
null packets (due to a lack of normal packets to send) may also serve as an 'opportunistic’
synchronization sequence. For unframed data streams, this requires null.alignment packets to be
included, either as every (N+1)th null, or as the final null.

For writing unframed data to memory, alternative synchronisation mechanisms may also be
employed. For example, by dividing memory into blocks of known size, and requiring that packets
do not straddle block boundaries. The first byte of every block will therefore be the start of a
packet. Details of such schemes are out of scope of this specification.



Chapter 3. Packet Encapsulation for E-Trace

Chapter 2 describes the packet encapsulation in general terms. This chapter describes how that
applies in the context of E-Trace.

The RISC-V Trace Control Interface Specification includes several fields relevant for the
construction and synchronization of packets, as described in the following sections.

3.1. srcID

* trTelnhibitSrc in the trTeControl register of a trace encoder indicates whether a srcID is
present or absent in the encapsulated packets;

* trTeSrcBits in the trTelnstFeatures register indicates the length of the srcID;

* trTeSrcID in the trTelnstFeatures register indicates the value of the srcID associated with that
particular source.

3.2. timestamp

* When trTsEnable in the trTsControl register is 1, a timestamp may be optionally included, via
the timestamp field in the encapsulated packets. When present, header.extend will be 1 as
described in Section 2.1.3;

* trTsWidth in the trTsControl register indicates the number of bits in timestamp fields.
Note that some E-Trace packets may optionally include a time field, as an alternative method of

providing time information. Presence or absence of this is fixed for a given system based on a
discoverable parameter, but is not run-time configurable.

3.3. type

The capabilities of the trace source will determine the minimum width of the type field in the
payload field-group. For E-Trace:
* If only instruction trace is supported, the minimum width is 0 (i.e. the field is omitted)
 If both instruction and data trace are supported, the minimum width is 1, encoded as
o 0: Instruction trace packet
o 1: Data trace packet

* A width of 2 or more is permited for applications where packet types other than instruction and
data trace are required. Encoding for this case is application specific and not mandated by this
standard.


https://github.com/riscv-non-isa/tg-nexus-trace/blob/master/pdfs/RISC-V-Trace-Control-Interface.pdf

3.4. Synchronization

* trPibAsyncFreq, trRamAsyncFreq and trAtbBridgeAsyncFreq in the trPibControl,
trRamControl and trAtbBridgeControl registers respectively are used to determine the interval
between insertion of synchronization sequences.

10



	Unformatted Trace & Diagnostic Data Packet Encapsulation for RISC-V
	Table of Contents
	Change Log
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. Glossary

	Chapter 2. Packet Encapsulation
	2.1. Normal Encapsulation Structure
	2.1.1. Header
	2.1.2. srcID
	2.1.3. Timestamp
	2.1.4. Payload
	2.1.5. Packet Length

	2.2. Null Encapsulation
	2.3. Synchronization

	Chapter 3. Packet Encapsulation for E-Trace
	3.1. srcID
	3.2. timestamp
	3.3. type
	3.4. Synchronization


