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Chapter 1. Preface

Preface to Version 20240901

Chapters 2 through 8 of this document form the RISC-V IOMMU Base Architecture Specification.
Chapter 9 includes the standard extensions to the base architecture. This release, version 20240901,
contains the following versions of the RISC-V IOMMU Base Architecture specification and standard
extensions:

Specification Version Status

RISC-V IOMMU Base Architecture specification 
Quality-of-Service (QoS) Identifiers Extension

1.0 
1.0

Ratified
Ratified

The following backward-compatible changes, comprising a set of clarifications and corrections, have
been made since version 1.0.0:

⚫ A set of typographic errors and editorial updates were made.

⚫ Translations cached, if any, in Bare mode do not require invalidation.

⚫ Clarified that memory faults encountered by commands also set the cqmf flag.

⚫ Values tested by algorithms in SW Guidelines are before modifications made by the algorithms.

⚫ Included SW guidelines for modifying non-leaf PDT entries.

⚫ Clarified the behavior for in-flight transactions observed at the time of ddtp write operations.

⚫ Clarified the behavior when IOTINVAL is invoked with an invalid address.

⚫ Stated that faults leading to UR/CA ATS responses are reported in the Fault Queue.

⚫ Added a detailed description of the capabilities.PAS field.

⚫ SW guidelines for changing IOMMU modes and programming tr_req_ctl and HPM counters.

⚫ PCIe ATS Translation Resp. grants execute permission only if requested.

⚫ Clarified the handling of hardware implementations that internally split 8-byte transactions.

⚫ Shadow stack encodings introduced by Zicfiss are reserved for IOMMU use.

⚫ Listed the fault codes reported for faults detected by Page Request.

⚫ Updated Fig 31 to remove the unused Destination ID field for ATS.PRGR

⚫ Included a software guideline for IOMMU emulation.

These changes were made through PR#243 [1].

Preface to Version 1.0.0

⚫ Ratified version of the RISC-V IOMMU Architecture Specification.
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Chapter 2. Introduction

The Input-Output Memory Management Unit (IOMMU), sometimes referred to as a System MMU
(SMMU), is a system-level Memory Management Unit (MMU) that connects direct-memory-access-
capable Input/Output (I/O) devices to system memory.

For each I/O device connected to the system through an IOMMU, software can configure at the
IOMMU a device context, which associates with the device a specific virtual address space and other
per-device parameters. By giving each device its own separate device context at an IOMMU, each
device can be individually configured for a separate operating system, which may be a guest OS or the
main (host) OS. On every memory access initiated by a device, the IOMMU identifies the originating
device by some form of unique device identifier, which the IOMMU then uses to locate the
appropriate device context within data structures supplied by software. For PCIe [2], for example, the
originating device may be identified by the unique 16-bit triplet of PCI bus number (8-bit), device
number (5-bit), and function number (3-bit) (collectively known as routing identifier or RID) and
optionally up to 8-bit segment number when the IOMMU supports multiple Hierarchies. This
specification refers to such unique device identifier as device_id and supports up to 24-bit wide
identifiers.



A Hierarchy is a PCI Express I/O interconnect topology, wherein the Configuration Space
addresses, referred to as the tuple of Bus/Device/Function Numbers, are unique. In some
contexts, a Hierarchy is also called a Segment, and in Flit Mode, the Segment number is
sometimes included in the ID of a Function.

Some devices may support shared virtual addressing which is the ability to share process address
spaces with devices. Sharing process address spaces with devices allows to rely on core kernel memory
management for DMA, removing some complexity from application and device drivers. After binding
to a device, applications can instruct it to perform DMA on statically or dynamically allocated buffers.
To support such addressing, software can configure one or more process contexts into the device
context. Every memory access initiated by such a device is accompanied by a unique process
identifier, which the IOMMU uses in conjunction with the unique device identifier to locate the
appropriate process context configured by software in the device context. For PCIe, for example, the
process context may be identified by the unique 20-bit process address space identifier (PASID). This
specification refers to such unique process identifiers as process_id and supports up to 20-bit wide
identifiers.

The IOMMU employs a two-stage address translation process to translate the IOVA to an SPA and to
enforce memory protections for the DMA. To perform address translation and memory protection the
IOMMU uses same page table formats as used by the CPU’s MMU for the first-stage and second-stage
address translation. Using the same page table formats as the CPU’s MMU removes some of the
memory management complexity for DMA. Use of an identical format also allows the same page
tables to be used simultaneously by both the CPU MMU and the IOMMU.

Although there is no option to disable two-stage address translation, either stage may be effectively
disabled by configuring the virtual memory scheme for that stage to be Bare i.e. perform no address
translation or memory protection.

The virtual memory scheme employed by the IOMMU may be configured individually per device in
the IOMMU. Devices perform DMA using an I/O virtual address (IOVA). Depending on the virtual
memory scheme selected for a device, the IOVA used by the device may be a supervisor physical
address (SPA), guest physical address (GPA), or a virtual address (VA).
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If the virtual memory scheme selected for both stages is Bare then the IOVA is a SPA. There is no
address translation or protection performed by the IOMMU.

If the virtual memory scheme selected for first-stage is Bare but the scheme for the second-stage is
not Bare then the IOVA is a GPA. The first-stage is effectively disabled. The second-stage translates
the GPA to SPA and enforces the configured memory protections. Such a configuration would be
typically employed when the device control is passed through to a virtual machine but the Guest OS in
the VM does not use first-stage address translation to further constrain memory accesses from such
devices. Comparing to a RISC-V hart, this configuration is analogous to two-stage address translation
being in effect on a RISC-V hart with the G-stage active and the VS-stage set to Bare.

If the virtual memory scheme selected for first-stage is not Bare but the scheme for the second-stage
is Bare then IOVA is a VA. The second-stage is effectively disabled. The first-stage translates the VA to
a SPA and enforces the configured memory protections. This configuration would be typically
employed when the IOMMU is used by a native OS or when the control of the device is retained by the
hypervisor itself. Comparing to a RISC-V hart, this configuration is analogous to single-stage address
translation being in effect on a RISC-V hart.

If the virtual memory scheme selected for neither stage is Bare then the IOVA is a VA. Two-stage
address translation is in effect. The first-stage translates the VA to a GPA and the second-stage
translates the GPA to a SPA. Each stage enforces the configured memory protections. Such a
configuration would be typically be employed when the device control is passed-through to a virtual
machine and the Guest OS in the VM uses the first-stage address translation to further constrain the
memory accessed by such devices and associated privileges and memory protections. Comparing to a
RISC-V hart, this configuration is analogous to two-stage address translation being in effect on a RISC-
V hart with both G-stage and VS-stage active (not Bare).

DMA address translation in the IOMMU has certain performance implications for DMA accesses as
the access time may be lengthened by the time required to determine the SPA using the software
provided data structures. Similar overheads in the CPU MMU are mitigated typically through the use
of a translation look-aside buffer (TLB) to cache these address translations such that they may be re-
used to reduce the translation overhead on subsequent accesses. The IOMMU may employ similar
address translation caches, referred as IOMMU Address Translation Cache (IOATC). The IOMMU
provides mechanisms for software to synchronize the IOATC with the memory resident data
structures used for address translation when they are modified. Software may configure the device
context with a software defined context identifier called guest soft-context identifier (GSCID) to
indicate that a collection of devices are assigned to the same VM and thus access a common virtual
address space. Software may configure the process context with a software defined context identifier
called process soft-context identifier (PSCID) to identify a collection of processes that share a
common virtual address space. The IOMMU may use the GSCID and PSCID to tag entries in the
IOATC to avoid duplication and simplify invalidation operations.

Some devices may participate in the translation process and provide a device side ATC (DevATC) for
its own memory accesses. By providing a DevATC, the device shares the translation caching
responsibility and thereby reduce probability of "thrashing" in the IOATC. The DevATC may be sized
by the device to suit its unique performance requirements and may also be used by the device to
optimize DMA latency by prefetching translations. Such mechanisms require close cooperation of the
device and the IOMMU using a protocol. For PCIe, for example, the Address Translation Services
(ATS) protocol may be used by the device to request translations to cache in the DevATC and to
synchronize it with updates made by software address translation data structures. The device
participating in the address translation process also enables the use of I/O page faults to avoid the core
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kernel memory manager from having to make all physical memory that may be accessed by the device
resident at all times. For PCIe, for example, the device may implement the Page Request Interface
(PRI) to dynamically request the memory manager to make a page resident if it discovers the page for
which it requested a translation was not available. An IOMMU may support specialized software
interfaces and protocols with the device to enable services such as PCIe ATS and PCIe PRI [2].

In systems built with an Incoming Message-Signaled Interrupt Controller (IMSIC), the IOMMU may
be programmed by the hypervisor to direct message-signaled interrupts (MSI) from devices controlled
by the guest OS to a guest interrupt file in an IMSIC. Because MSIs from devices are simply memory
writes, they would naturally be subject to the same address translation that an IOMMU applies to
other memory writes. However, the RISC-V Advanced Interrupt Architecture [3] requires that
IOMMUs treat MSIs directed to virtual machines specially, in part to simplify software, and in part to
allow optional support for memory-resident interrupt files. The device context is configured by
software with parameters to identify memory accesses to a virtual interrupt file and to be translated
using a MSI address translation table configured by software in the device context.

2.1. Glossary

Table 1. Terms and definitions

Term Definition

AIA RISC-V Advanced Interrupt Architecture [3].

ATS / PCIe ATS Address Translation Services: A PCIe protocol to support DevATC [2].

CXL Compute Express Link bus standard.

DC / Device
Context

A hardware representation of state that identifies a device and the VM to which
the device is assigned.

DDT Device-directory-table: A radix-tree structure traversed using the unique device
identifier to locate the Device Context structure.

DDI Device-directory-index: A sub-field of the unique device identifier used as a
index into a leaf or non-leaf DDT structure.

Device ID An identification number that is up to 24-bits to identify the source of a DMA or
interrupt request. For PCIe devices this is the routing identifier (RID) [2].

DevATC An address translation cache at the device.

DMA Direct Memory Access.

GPA Guest Physical Address: An address in the virtualized physical memory space of
a virtual machine.

GSCID Guest soft-context identifier: An identification number used by software to
uniquely identify a collection of devices assigned to a virtual machine. An
IOMMU may tag IOATC entries with the GSCID. Device contexts programmed
with the same GSCID must also be programmed with identical second-stage
page tables.

Guest Software in a virtual machine.

HPM Hardware Performance Monitor.

Hypervisor Software entity that controls virtualization.

ID Identifier.

IMSIC Incoming Message-signaled Interrupt Controller.
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Term Definition

IOATC IOMMU Address Translation Cache: cache in IOMMU that caches data
structures used for address translations.

IOVA I/O Virtual Address: Virtual address for DMA by devices.

MSI Message Signaled Interrupts.

OS Operating System.

PASID Process Address Space Identifier: It identifies the address space of a process. The
PASID value is provided in the PASID TLP prefix of the request.

PBMT Page-Based Memory Types.

PC Process Context.

PCIe Peripheral Component Interconnect Express bus standard [2].

PDI Process-directory-index: a sub field of the unique process identifier used to
index into a leaf or non-leaf PDT structure.

PDT Process-directory-table: A radix tree data structure traversed using the unique
Process identifier to locate the process context structure.

PMA Physical Memory Attributes.

PMP Physical Memory Protection.

PPN Physical Page Number.

PRI Page Request Interface - a PCIe protocol [2] that enables devices to request OS
memory manager services to make pages resident.

Process ID An identification number that is up to 20-bits to identify a process context. For
PCIe devices this is the PASID [2].

PSCID Process soft-context identifier: An identification number used by software to
identify a unique address space. The IOMMU may tag IOATC entries with
PSCID.

PT Page Table.

PTE Page Table Entry. A leaf or non-leaf entry in a page table.

Reserved A register or data structure field reserved for future use. Reserved fields in data
structures must be set to 0 by software. Software must ignore reserved fields in
registers and preserve the value held in these fields when writing values to other
fields in the same register.

RID / PCIe RID PCIe routing identifier [2].

RO Read-only - Register bits are read-only and cannot be altered by software. Where
explicitly defined, these bits are used to reflect changing hardware state, and as a
result bit values can be observed to change at run time.
If the optional feature that would Set the bits is not implemented, the bits must
be hardwired to Zero

RW Read-Write - Register bits are read-write and are permitted to be either Set or
Cleared by software to the desired state.
If the optional feature that is associated with the bits is not implemented, the
bits are permitted to be hardwired to Zero.

RW1C Write-1-to-clear status - Register bits indicate status when read. A Set bit
indicates a status event which is Cleared by writing a 1b. Writing a 0b to RW1C
bits has no effect.
If the optional feature that would Set the bit is not implemented, the bit must be
read-only and hardwired to Zero
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Term Definition

RW1S Read-Write-1-to-set - register bits indicate status when read. The bit may be Set
by writing 1b. Writing a 0b to RW1S bits has no effect.
If the optional feature that introduces the bit is not implemented, the bit must be
read-only and hardwired to Zero

SOC System on a chip, also referred as system-on-a-chip and system-on-chip.

SPA Supervisor Physical Address: Physical address used to to access memory and
memory-mapped resources.

TLP Transaction Layer Packet.

VA Virtual Address.

VM Virtual Machine: An efficient, isolated duplicate of a real computer system. In
this specification it refers to the collection of resources and state that is
accessible when a RISC-V hart supporting the hypervisor extension executes
with the virtualization mode set to 1.

VMM Virtual Machine Monitor. Also referred to as hypervisor.

VS Virtual Supervisor: Supervisor privilege in virtualization mode.

WARL Write Any values, Reads Legal values: Attribute of a register field that is only
defined for a subset of bit encodings, but allow any value to be written while
guaranteeing to return a legal value whenever read.

WPRI Writes Preserve values, Reads Ignore values: Attribute of a register field that is
reserved for future use.

2.2. Usage models

2.2.1. Non-virtualized OS

A non-virtualized OS may use the IOMMU for the following significant system-level functionalities:

1. Protect the operating system from bad memory accesses from errant devices

2. Support 32-bit devices in 64-bit environment (avoidance of bounce buffers)

3. Support mapping of contiguous virtual addresses to an underlying fragmented physical addresses
(avoidance of scatter/gather lists)

4. Support shared virtual addressing

In the absence of an IOMMU a device could access any memory, such as privileged memory, and
cause malicious or unintended corruptions. This may be due to hardware bugs, device driver bugs, or
due to malicious software/hardware.

The IOMMU offers a mechanism for the OS to defend against such unintended corruptions by
limiting the memory that can be accessed by devices. As depicted in Figure 1 the OS may configure the
IOMMU with a page table to translate the IOVA and thereby limit the addresses that may be accessed
to those allowed by the page table.
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Figure 1. Device isolation in non-virtualized OS

Legacy 32-bit devices cannot access the memory above 4 GiB. The IOMMU, through its address
remapping capability, offers a simple mechanism for the device to directly access any address in the
system (with appropriate access permission). Without an IOMMU, the OS must resort to copying data
through buffers (also known as bounce buffers) allocated in memory below 4 GiB. In this scenario the
IOMMU improves the system performance.

The IOMMU can be useful to perform scatter/gather DMA as it permits to allocate large regions of
memory for I/O without the need for all of the memory to be contiguous. A contiguous virtual address
range can map to such fragmented physical addresses and the device programmed with the virtual
address range.

The IOMMU can be used to support shared virtual addressing which is the ability to share a process
address space with devices. The virtual addresses used for DMA are then translated by the IOMMU to
an SPA.

When the IOMMU is used by a non-virtualized OS, the first-stage suffices to provide the required
address translation and protection function and the second-stage may be set to Bare.

2.2.2. Hypervisor

IOMMU makes it possible for a guest operating system, running in a virtual machine, to be given
direct control of an I/O device with only minimal hypervisor intervention.

A guest OS with direct control of a device will program the device with guest physical addresses,
because that is all the OS knows. When the device then performs memory accesses using those
addresses, an IOMMU is responsible for translating those guest physical addresses into supervisor
physical addresses, referencing address-translation data structures supplied by the hypervisor.

Figure 2 illustrates the concept. The device D1 is directly assigned to VM-1 and device D2 is directly
assigned to VM-2. The VMM configures a second-stage page table to be used for each device and
restricts the memory that can be accessed by D1 to VM-1 associated memory and from D2 to VM-2
associated memory.
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Figure 2. DMA translation to enable direct device assignment

To handle MSIs from a device controlled by a guest OS, the hypervisor configures an IOMMU to
redirect those MSIs to a guest interrupt file in an IMSIC (see Figure 3) or to a memory-resident
interrupt file. The IOMMU is responsible to use the MSI address-translation data structures supplied
by the hypervisor to perform the MSI redirection. Because every interrupt file, real or virtual, occupies
a naturally aligned 4-KiB page of address space, the required address translation is from a virtual
(guest) page address to a physical page address, the same as supported by regular RISC-V page-based
address translation.

Figure 3. MSI address translation to direct guest programmed MSI to IMSIC guest interrupt files

2.2.3. Guest OS

The hypervisor may provide a virtual IOMMU facility, through hardware emulation or by
enlightening the guest OS to use a software interface with the Hypervisor (also known as para-
virtualization). The guest OS may then use the facilities provided by the virtual IOMMU to avail the
same benefits as those discussed for a non-virtualized OS through the use of a first-stage page table
that it controls. The hypervisor establishes a second-stage page table that it controls to virtualize the
address space for the virtual machine and to contain memory accesses from the devices passed
through to the VM to the memory associated with the VM.

With two-stage address translations active, the IOVA is first translated to a GPA using the first-stage
page tables managed by the guest OS and the GPA translated to a SPA using the second-stage page
tables managed by the hypervisor.
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Figure 4 illustrates the concept.

Figure 4. Address translation in IOMMU for Guest OS

The IOMMU is configured to perform address translation using a first-stage and second-stage page
table for device D1. The second-stage is typically used by the hypervisor to translate GPA to SPA and
limit the device D1 to memory associated with VM-1. The first-stage is typically configured by the
Guest OS to translate a VA to a GPA and contain device D1 access to a subset of VM-1 memory.

For device D2 only the second-stage is active and the first-stage is set to Bare.

The host OS or hypervisor may also retain a device, such as D3, for its own use. The first-stage suffices
to provide the required address translation and protection function for device D3 and the second-
stage is set to Bare.

2.3. Placement and data flow

Figure 5 shows an example of a typical system on a chip (SOC) with RISC-V hart(s). The SOC
incorporates memory controllers and several IO devices. This SOC also incorporates two instances of
the IOMMU. A device may be directly connected to the IO Bridge and the system interconnect or may
be connected through a Root Port when a IO protocol transaction to system interconnect transaction
translation is required. In case of PCIe [2], for example, the Root Port is a PCIe port that maps a portion
of a hierarchy through an associated virtual PCI-PCI bridge and maps the PCIe IO protocol
transactions to the system interconnect transactions.

The first IOMMU instance, IOMMU 0 (associated with the IO Bridge 0), interfaces a Root Port to the
system fabric/interconnect. One or more endpoint devices are interfaced to the SoC through this Root
Port. In the case of PCIe, the Root Port incorporates an ATS interface to the IOMMU that is used to
support the PCIe ATS protocol by the IOMMU. The example shows an endpoint device with a device
side ATC (DevATC) that holds translations obtained by the device from IOMMU 0 using the PCIe ATS
protocol [2].
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When such IO-protocol-to-system-fabric-protocol translation using a Root Port is not required, the
devices may interface directly with the system fabric. The second IOMMU instance, IOMMU 1
(associated with the IO Bridge 1), illustrates interfacing devices (IO Devices A and B) to the system
fabric without the use of a Root Port.

The IO Bridge is placed between the device(s) and the system interconnect to process DMA
transactions. IO Devices may perform DMA transactions using IO Virtual Addresses (VA, GVA or
GPA). The IO Bridge invokes the associated IOMMU to translate the IOVA to a Supervisor Physical
Addresses (SPA).

The IOMMU is not invoked for outbound transactions.

Figure 5. Example of IOMMUs integration in SoC.

The IOMMU is invoked by the IO Bridge for address translation and protection for inbound
transactions. The data associated with the inbound transactions is not processed by the IOMMU. The
IOMMU behaves like a look-aside IP to the IO Bridge and has several interfaces (see Figure 6):

⚫ Host interface: it is an interface to the IOMMU for the harts to access its memory-mapped registers
and perform global configuration and/or maintenance operations.

⚫ Device Translation Request interface: it is an interface, which receives the translation requests
from the IO Bridge. On this interface the IO Bridge provides information about the request such
as:

a. The hardware identities associated with transaction - the device_id and if applicable the
process_id and its validity. The IOMMU uses the hardware identities to retrieve the context
information to perform the requested address translations.

b. The IOVA and the type of the transaction (Translated or Untranslated).

c. Whether the request is for a read, write, execute, or an atomic operation.

i. Execute requested must be explicitly associated with the request (e.g., using a PCIe PASID).
When not explicitly requested, the default must be 0.
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d. The privilege mode associated with the request. When a privilege mode is not explicitly
associated with the request (e.g., using a PCIe PASID), the default privilege mode must be User.
For requests without a process_id the privilege mode must be User.

e. The number of bytes accessed by the request.

f. The IO Bridge may also provide some additional opaque information (e.g. tags) that are not
interpreted by the IOMMU but returned along with the response from the IOMMU to the IO
Bridge. As the IOMMU is allowed to complete translation requests out of order, such
information may be used by the IO Bridge to correlate completions to previous requests.

⚫ Data Structure interface: it is used by the IOMMU for implicit access to memory. It is a requester
interface to the IO Bridge and is used to fetch the required data structure from main memory. This
interface is used to access:

a. The device and process directories to get the context information and translation rules.

b. The first-stage and/or second-stage page table entries to translate the IOVA.

c. The in-memory queues (command-queue, fault-queue, and page-request-queue) used to
interface with software.

⚫ Device Translation Completion interface: it is an interface which provides the completion
response from the IOMMU for previously requested address translations. The completion
interface may provide information such as:

a. The status of the request, indicating if the request completed successfully or a fault occurred.

b. If the request was completed successfully; the Supervisor Physical Address (SPA).

c. Opaque information (e.g. tags), if applicable, associated with the request.

d. The page-based memory types (PBMT), if Svpbmt is supported, obtained from the IOMMU
address translation page tables. The IOMMU provides the page-based memory type as resolved
between the first-stage and second-stage page table entries.

⚫ ATS interface: The ATS interface, if the optional PCIe ATS capability is supported by the IOMMU,
is used to communicate with ATS capable endpoints through the PCIe Root Port. This interface is
used:

a. To receive ATS translation requests from the endpoints and to return the completions to the
endpoints. The Root Port may provide an indication if the endpoint originating the request is a
CXL type 1 or type 2 device.

b. To send ATS "Invalidation Request" messages to the endpoints and to receive the "Invalidation
Completion" messages from the endpoints.

c. To receive "Page Request" and "Stop Marker" messages from the endpoints and to send "Page
Request Group Response" messages to the endpoints.

The interfaces related to recording an incoming MSI in a memory-resident interrupt file (MRIF) (See
RISC-V Advanced Interrupt Architecture [3]) are implementation-specific. The partitioning of
responsibility between the IOMMU and the IO bridge for recording the incoming MSI in an MRIF and
generating the associated notice MSI are implementation-specific.
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Figure 6. IOMMU interfaces.

Similar to the RISC-V harts, physical memory attributes (PMA) and physical memory protection
(PMP) checks must be completed on all inbound IO transactions even when the IOMMU is in bypass
(Bare mode). The placement and integration of the PMA and PMP checkers is a platform choice. PMA
and PMP checkers reside outside the IOMMU. The example above is showing them in the IO Bridge.

Implicit accesses by the IOMMU itself through the Data Structure interface are checked by the PMA
checker. PMAs are tightly tied to a given physical platform’s organization, and many details are
inherently platform-specific.

The memory accesses performed by the IOMMU using the Data Structure interface need not be
ordered in general with the device-initiated memory accesses.



The IOMMU may generate implicit memory accesses on the Data Structure interface to
access data structures needed to perform the address translations. Such accesses must
not be blocked by the original device-initiated memory access.

The IO bridge may perform ordering of memory accesses on the Data Structure interface
to satisfy the necessary hazard checks and other rules as defined by the IO bridge and the
system interconnect.

The IOMMU provides the resolved PBMT (PMA, IO, NC) along with the translated address on the
device translation completion interface to the IO Bridge. The PMA checker in the IO Bridge may use
the provided PBMT to override the PMA(s) for the associated memory pages.

The PMP checker may use the hardware ID of the bus access initiator to determine physical memory
access privileges. As the IOMMU itself is a bus access initiator for its implicit accesses, the IOMMU
hardware ID may be used by the PMP checker to select the appropriate access control rules.



The IOMMU does not validate the authenticity of the hardware IDs provided by the IO
bridge.

The IO bridge and/or the root ports must include suitable mechanisms to authenticate the
hardware IDs. In some SOCs this may be trivially achieved as a property of the devices
being integrated into the SOC and their IDs being immutable. For PCIe, for example, the
PCIe defined Access Control Services (ACS) Source Validation capabilities may be used to
authenticate the hardware IDs. Other implementation-specific methods in the IO bridge
may be provided to perform such authentication.
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2.4. IOMMU features

Version 1.0 of the RISC-V IOMMU specification supports the following features:

⚫ Memory-based device context to locate parameters and address translation structures. The device
context is located using the hardware-provided unique device_id. The supported device_id
width may be up to 24 bits.

⚫ Memory-based process context to locate parameters and address translation structures using
hardware-provided unique process_id. The supported process_id may be up to 20 bits.

⚫ 16-bit GSCIDs and 20-bit PSCIDs.

⚫ Two-stage address translation.

⚫ Page based virtual-memory system as specified by the RISC-V Privileged specification [4] to allow
software flexibility to either use a common page table for the CPU MMU as well as the IOMMU or
to use a separate page table for the IOMMU.

⚫ Up to 57-bit virtual-address width, 56-bit system-physical-address, and 59-bit guest-physical-
address width.

⚫ Hardware updating of PTE Accessed and Dirty bits.

⚫ Identifying memory accesses to a virtual interrupt file and MSI address translation using MSI page
tables specified by the RISC-V Advanced Interrupt Architecture [3].

⚫ Svnapot and Svpbmt extensions.

⚫ PCIe ATS and PRI services [2]. Support for translating an IOVA to a GPA instead of a SPA in
response to a translation request.

⚫ A hardware performance monitor (HPM).

⚫ MSI and wire-signaled interrupts to request service from software.

⚫ A register interface for software to request an address translation to support debug.

Features supported by the IOMMU may be discovered using the capabilities register Section 6.3.
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Chapter 3. Data Structures

A data structure called device-context (DC) is used by the IOMMU to associate a device with an address
space and to hold other per-device parameters used by the IOMMU to perform address translations. A
radix-tree data structure called device directory table (DDT) that is traversed using the device_id is
used to locate the DC.

The address space used by a device may require second-stage address translation and protection when
the control of the device is passed through to a Guest OS. A Guest OS may optionally provide a first-
stage page table for translating IOVA used by a device controlled by the Guest OS to a GPA. When the
use of a first-stage is not required, then it may be effectively disabled by selecting the first-stage
address translation scheme to be Bare. The second-stage is used to translate the GPA to a SPA.

When the control of the device is retained by the hypervisor or Host OS itself then only the first-stage
suffices to perform necessary address translations and protections; the second-stage scheme may be
effectively disabled for the device by programming the second-stage address translation scheme to be
Bare.

When second-stage address translation is not Bare, the DC holds the PPN of the root second-stage page
table; a guest-soft-context-ID (GSCID), which facilitates invalidation of cached address translations on
a per-virtual-machine basis; and the second-stage address translation scheme.

Some devices support multiple process contexts where each context may be associated with a different
process and thus a different virtual address space. The context in such devices may be configured with
a process_id that identifies the address space. When making a memory access, such devices signal
the process_id along with the device_id to identify the accessed address space. An example of
such a device may be a GPU that supports multiple process contexts, where each context is associated
with a different user process, such that the GPU may access memory using the virtual address
provided by the user process itself. To support selecting an address space associated with the
process_id, the DC holds the PPN of the root Process Directory Table (PDT), a radix-tree data
structure, indexed using fields of the process_id to locate a data structure called the Process
Context (PC).

When a PDT is active, the controls for first-stage address translation are held in the (PC).

When a PDT is not active, the controls for first-stage address translation are held in the DC itself.

The first-stage address translation controls include the PPN of the root first-stage page table; a
process-soft-context-ID (PSCID), which facilitates invalidation of cached address translations on a
per-address-space basis; and the first-stage address translation scheme.

To handle MSIs from a device controlled by a guest OS, an IOMMU must be able to redirect those
MSIs to a guest interrupt file in an IMSIC. Because MSIs from devices are simply memory writes, they
would naturally be subject to the same address translation that an IOMMU applies to other memory
writes. However, the IOMMU architecture may treat MSIs directed to virtual machines specially, in
part to simplify software, and in part to allow optional support for memory-resident interrupt files. To
support this capability, the architecture adds to the device contexts an MSI address mask and address
pattern, used together to identify pages in the guest physical address space that are the destinations of
MSIs; and the real physical address of an MSI page table for controlling the translation and/or
conversion of MSIs from the device. The IOMMU support for MSIs to virtual machines is specified by
the Advanced Interrupt Architecture specification.
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The DC further holds controls for the type of transactions that a device is allowed to generate. One
example of such a control is whether the device is allowed to use the PCIe defined Address Translation
Service (ATS) [2].

Two formats of the device-context structure are supported:

⚫ Base Format - is 32-bytes in size used when the special treatment of MSI as specified in Section
3.3.3 is not supported by the IOMMU.

⚫ Extended Format - is 64-bytes in size and extends the base format DC with additional fields to
translate MSIs as specified in Section 3.3.3.

If capabilities.MSI_FLAT is 1 then the Extended Format is used else the Base Format is used.

The DDT used to locate the DC may be configured to be a 1, 2, or 3 level radix-tree depending on the
maximum width of the device_id supported. The partitioning of the device_id to obtain the
device directory indexes (DDI) to traverse the DDT radix-tree are as follows:

Figure 7. Base format device_id partitioning

Figure 8. Extended format device_id partitioning

The PDT may be configured to be a 1, 2, or 3 level radix-tree depending on the maximum width of the
process_id supported by that device. The partitioning of the process_id to obtain the process
directory indices (PDI) to traverse the PDT radix-tree are as follows:

Figure 9. process_id partitioning for PDT radix-tree traversal



The process_id partitioning is designed to require a maximum of 4 KiB, a page, of
memory for each process directory table. The root of the table when using a 20-bit wide
process_id is not fully populated. The option of making the root table occupy 32 KiB
was considered but not adopted as these tables are allocated at run time and contiguous
memory allocation larger than a page may stress the Guest and hypervisor memory
allocators.


All RISC-V IOMMU implementations are required to support DDT and PDT located in
main memory. Supporting data structures in I/O memory is not required but is not
prohibited by this specification.

3.1. Device-Directory-Table (DDT)

The DDT is a 1, 2, or 3-level radix-tree indexed using the device directory index (DDI) bits of the
device_id to locate a DC.
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The following diagrams illustrate the DDT radix-tree. The PPN of the root device-directory-table is
held in a memory-mapped register called the device-directory-table pointer (ddtp).

Each valid non-leaf (NL) entry is 8-bytes in size and holds the PPN of the next device-directory-table.

A valid leaf device-directory-table entry holds the device-context (DC).

Figure 10. Three, two and single-level device directory with extended format DC

Figure 11. Three, two and single-level device directory with base format DC

3.1.1. Non-leaf DDT entry

A valid (V==1) non-leaf DDT entry provides the PPN of the next level DDT.

Figure 12. Non-leaf device-directory-table entry
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3.1.2. Leaf DDT entry

The leaf DDT page is indexed by DDI[0] and holds the device-context (DC).

In base-format the DC is 32-bytes. In extended-format the DC is 64-bytes.

Figure 13. Base-format device-context

Figure 14. Extended-format device-context

The DC is interpreted as four 64-bit doublewords in base-format and as eight 64-bit doublewords in
extended-format. The byte order of each of the doublewords in memory, little-endian or big-endian, is
the endianness as determined by fctl.BE (Section 6.4). The IOMMU may read the DC fields in any
order.
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3.1.3. Device-context fields

3.1.3.1. Translation control (tc)

Figure 15. Translation control (tc) field

DC is valid if the V bit is 1; If it is 0, all other bits in DC are don’t-care and may be freely used by
software.

If the IOMMU supports PCIe ATS specification [2] (see capabilities register), the EN_ATS bit is
used to enable ATS transaction processing. If EN_ATS is set to 1, IOMMU supports the following
inbound transactions; otherwise they are treated as unsupported requests.

⚫ Translated read for execute transaction

⚫ Translated read transaction

⚫ Translated write/AMO transaction

⚫ PCIe ATS Translation Request

⚫ PCIe ATS Invalidation Completion Message

If the EN_ATS bit is 1 and the T2GPA bit is set to 1 the IOMMU performs the two-stage address
translation to determine the permissions and the size of the translation to be provided in the
completion of a PCIe ATS Translation Request from the device. However, the IOMMU returns a GPA,
instead of a SPA, as the translation of an IOVA in the response. In this mode of operation, the ATC in
the device caches a GPA as a translation for an IOVA and uses the GPA as the address in subsequent
translated memory access transactions. Usually, translated requests use a SPA and need no further
translation to be performed by the IOMMU. However when T2GPA is 1, translated requests from a
device use a GPA and are translated by the IOMMU using the second-stage page table to a SPA. The
T2GPA control enables a hypervisor to contain DMA from a device, even if the device misuses the ATS
capability and attempts to access memory that is not associated with the VM.



When T2GPA is enabled, the addresses provided to the device in response to a PCIe ATS
Translation Request cannot be directly routed by the I/O fabric (e.g. PCI switches) that
connect the device to other peer devices and to host. Such addresses also cannot be routed
within the device when peer-to-peer transactions within the device (e.g. between functions
of a device) are supported.

Use of T2GPA set to 1 may not be compatible with devices that implement caches tagged
by the translated address returned in response to a PCIe ATS Translation Request.
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

Hypervisors that configure T2GPA to 1 must ensure through protocol-specific means that
translated accesses are routed through the host such that the IOMMU may translate the
GPA and then route the transaction based on PA to memory or to a peer device. For PCIe,
for example, the Access Control Service (ACS) must be configured to always redirect peer-
to-peer (P2P) requests upstream to the host.

As an alternative to setting T2GPA to 1, the hypervisor may establish a trust relationship
with the device if authentication protocols are supported by the device. For PCIe, for
example, the PCIe component measurement and authentication (CMA) capability provides
a mechanism to verify the device’s configuration and firmware/executable (Measurement)
and hardware identities (Authentication) to establish such a trust relationship.

If EN_PRI bit is 0, then PCIe "Page Request" messages from the device are invalid requests. A "Page
Request" message received from a device is responded to with a "Page Request Group Response"
message. Normally, a software handler generates this response message. However, under some
conditions the IOMMU itself may generate a response. For IOMMU-generated "Page Request Group
Response" messages the PRG-response-PASID-required (PRPR) bit when set to 1 indicates that the
IOMMU response message should include a PASID if the associated "Page Request" had a PASID.



Functions that support PASID and have the "PRG Response PASID Required" capability bit
set to 1, expect that "Page Request Group Response" messages will contain a PASID if the
associated "Page Request" message had a PASID. If the capability bit is 0, the function
does not expect PASID on any "Page Request Group Response" message and the behavior
of the function if it receives the response with a PASID is undefined. The PRPR bit should
be configured with the value held in the "PRG Response PASID Required" capability bit.

Setting the disable-translation-fault (DTF) bit to 1 disables reporting of faults encountered in the
address translation process. Setting DTF to 1 does not disable error responses from being generated to
the device in response to faulting transactions. Setting DTF to 1 does not disable reporting of faults
from the IOMMU that are not related to the address translation process. The faults that are not
reported when DTF is 1 are listed in Table 11.


A hypervisor may set DTF to 1 to disable fault reporting when it has identified conditions
that may lead to a flurry of errors such as due to an abnormal termination of a virtual
machine.

The DC.fsc field holds the context for first-stage translation. If the PDTV bit is 1, the field holds the
process-directory table pointer (pdtp). If the PDTV bit is 0, the DC.fsc field holds (iosatp).

The PDTV bit is expected to be set to 1 when DC is associated with a device that supports multiple
process contexts and thus generates a valid process_id with its memory accesses. For PCIe, for
example, if the request has a PASID then the PASID is used as the process_id.

When PDTV is 1, the DPE bit may set to 1 to enable the use of 0 as the default value of process_id
for translating requests without a valid process_id. When PDTV is 0, the DPE bit is reserved for
future standard extension.

The IOMMU supports the 1 setting of GADE and SADE bits if capabilities.AMO_HWAD is 1. When
capabilities.AMO_HWAD is 0, these bits are reserved.
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If GADE is 1, the IOMMU updates A and D bits in second-stage PTEs atomically. If GADE is 0, the
IOMMU causes a guest-page-fault corresponding to the original access type if the A bit is 0 or if the
memory access is a store and the D bit is 0.

If SADE is 1, the IOMMU updates A and D bits in first-stage PTEs atomically. If SADE is 0, the IOMMU
causes a page-fault corresponding to the original access type if the A bit is 0 or if the memory access is
a store and the D bit is 0.

If SBE is 0, implicit memory accesses to PDT entries and first-stage PTEs are little-endian else they
are big-endian. The supported values of SBE are the same as that of the fctl.BE field.

The SXL field controls the supported paged virtual-memory schemes as defined in Table 3. If
fctl.GXL is 1 then the SXL field must be 1; otherwise the legal values for the SXL field are the same
as those for the fctl.GXL field.

When SXL is 1, the following rules apply:

⚫ If the first-stage is not Bare, then a page fault corresponding to the original access type occurs if
the IOVA has bits beyond bit 31 set to 1.

⚫ If the second-stage is not Bare, then a guest page fault corresponding to the original access type
occurs if the incoming GPA has bits beyond bit 33 set to 1.

3.1.3.2. IO hypervisor guest address translation and protection (iohgatp)

Figure 16. IO hypervisor guest address translation and protection (iohgatp) field

The iohgatp field holds the PPN of the root second-stage page table and a virtual machine identified
by a guest soft-context ID (GSCID), to facilitate address-translation fences on a per-virtual-machine
basis. If multiple devices are associated to a VM with a common second-stage page table, the
hypervisor is expected to program the same GSCID in each iohgatp. The MODE field is used to select
the second-stage address translation scheme.

The second-stage page table formats are as defined by the Privileged specification. The fctl.GXL
field controls the supported address-translation schemes for guest physical addresses as defined in
Table 2.

The iohgatp MODE field identifies the paged virtual-memory schemes and its encodings are as
follows:

Table 2. Encodings of iohgatp.MODE field

fctl.GXL=0

Value Name Description

0 Bare No translation or protection.

1-7  —  Reserved for standard use.
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fctl.GXL=0

8 Sv39x4 Page-based 41-bit virtual addressing (2-bit extension of Sv39).

9 Sv48x4 Page-based 50-bit virtual addressing (2-bit extension of Sv48).

10 Sv57x4 Page-based 59-bit virtual addressing (2-bit extension of Sv57).

11-15  —  Reserved for standard use.

fctl.GXL=1

Value Name Description

0 Bare No translation or protection.

1-7  —  Reserved for standard use.

8 Sv32x4 Page-based 34-bit virtual addressing (2-bit extension of Sv32).

9-15  —  Reserved for standard use.

Implementations are not required to support all defined mode settings for iohgatp. The IOMMU
only needs to support the modes also supported by the MMU in the harts integrated into the system or
a subset thereof.

The root page table as determined by iohgatp.PPN is 16 KiB and must be aligned to a 16-KiB
boundary.



The GSCID field of iohgatp identifies an address space. If an identical GSCID is
configured in two DC when the second-stage page-table referenced by the two DC are not
identical then it is unpredictable whether the IOMMU uses the PTEs from the first page
table or the second page table. These are the only expected behaviors.

3.1.3.3. Translation attributes (ta)

Figure 17. Translation attributes (ta) field

The PSCID field of ta provides the process soft-context ID that identifies the address-space of the
process. PSCID facilitates address-translation fences on a per-address-space basis. The PSCID field in
ta is used as the address-space ID if DC.tc.PDTV is 0 and the iosatp.MODE field is not Bare.
When DC.tc.PDTV is 1, the PSCID field in ta is ignored.

The RCID and MCID fields are added by the QoS ID extension. If capabilities.QOSID is 0, these
bits are reserved and must be set to 0. IOMMU-initiated requests for accessing the following data
structures use the value configured in the RCID and MCID fields of DC.ta.

⚫ Process directory table (PDT)

⚫ Second-stage page table

⚫ First-stage page table
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⚫ MSI page table

⚫ Memory-resident interrupt file (MRIF)

The RCID and MCID configured in DC.ta are provided to the IO bridge on successful address
translations. The IO bridge should associate these QoS IDs with device-initiated requests.

3.1.3.4. First-Stage context (fsc)

If DC.tc.PDTV is 0, the DC.fsc field holds the iosatp that provides the controls for first-stage
address translation and protection.

Figure 18. IO Supervisor address translation and prot. (iosatp) field

The first-stage page table formats are as defined by the Privileged specification.

The DC.tc.SXL field controls the supported paged virtual-memory schemes.

The iosatp.MODE identifies the paged virtual-memory schemes and is encoded as defined in Table
3. The iosatp.PPN field holds the PPN of the root page of a first-stage page table.

When second-stage address translation is not Bare, the iosatp.PPN is a guest PPN. The GPA of the
root page is then converted by guest physical address translation process, as controlled by the
iohgatp, into a supervisor physical address.

Table 3. Encodings of iosatp.MODE field

DC.tc.SXL=0

Value Name Description

0 Bare No translation or protection.

1-7  —  Reserved for standard use.

8 Sv39 Page-based 39-bit virtual addressing.

9 Sv48 Page-based 48-bit virtual addressing.

10 Sv57 Page-based 57-bit virtual addressing.

11-13  —  Reserved for standard use.

14-15  —  Designated for custom use.

DC.tc.SXL=1

Value Name Description

0 Bare No translation or protection.

1-7  —  Reserved for standard use.

8 Sv32 Page-based 32-bit virtual addressing.

9-15  —  Reserved for standard use.

3.1. Device-Directory-Table (DDT) | Page 25

RISC-V IOMMU Architecture Specification | © RISC-V International



When DC.tc.PDTV is 1, the DC.fsc field holds the process-directory table pointer (pdtp). When the
device supports multiple process contexts, selected by the process_id, the PDT is used to determine
the first-stage page table and associated PSCID for virtual address translation and protection.

The pdtp field holds the PPN of the root PDT and the MODE field that determines the number of
levels of the PDT.

Figure 19. Process-directory table pointer (pdtp) field

When second-stage address translation is not Bare, the pdtp.PPN field holds a guest PPN. The GPA
of the root PDT is then converted by guest physical address translation process, as controlled by the
iohgatp, into a supervisor physical address. Translating addresses of PDT using a second-stage page
table, allows the PDT to be held in memory allocated by the guest OS and allows the guest OS to
directly edit the PDT to associate a virtual-address space identified by a first-stage page table with a
process_id.

Table 4. Encodings of pdtp.MODE field

Value Name Description

0 Bare No first-stage address translation or protection.

1 PD8 8-bit process ID enabled. The directory has 1 levels with 256 entries.The bits 19:8 of process_id
must be 0.

2 PD17 17-bit process ID enabled. The directory has 2 levels. The root PDT page has 512 entries and leaf
level has 256 entries. The bits 19:17 of process_id must be 0.

3 PD20 20-bit process ID enabled. The directory has 3 levels. The root PDT has 8 entries and the next
non-leaf level has 512 entries. The leaf level has 256 entries.

4-13  —  Reserved for standard use.

14-15  —  Designated for custom use.

3.1.3.5. MSI page table pointer (msiptp)

Figure 20. MSI page table pointer (msiptp) field

The msiptp.PPN field holds the PPN of the root MSI page table used to direct an MSI to a guest
interrupt file in an IMSIC. The MSI page table formats are defined by the Advanced Interrupt
Architecture specification.

The msiptp.MODE field is used to select the MSI address translation scheme.
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Table 5. Encodings of msiptp.MODE field

Value Name Description

0 Off Recognition of accesses to a virtual interrupt file using MSI address mask and pattern is not
performed.

1 Flat Flat MSI page table

2-13  —  Reserved for standard use.

14-15  —  Designated for custom use.

3.1.3.6. MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern)

Figure 21. MSI address mask (msi_addr_mask) field

Figure 22. MSI address pattern (msi_addr_pattern) field

The MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern) fields are used to
identify the 4-KiB pages of virtual interrupt files in the guest physical address space of the relevant
VM. An incoming memory access made by a device is recognized as an access to a virtual interrupt file
if the destination guest physical page matches the supplied address pattern in all bit positions that are
zeros in the supplied address mask. In detail, a memory access to guest physical address A is
recognized as an access to a virtual interrupt file’s memory-mapped page if:

(A >> 12) & ~msi_addr_mask = (msi_addr_pattern & ~msi_addr_mask)

where >> 12 represents shifting right by 12 bits, an ampersand (&) represents bitwise logical AND, and
~msi_addr_mask is the bitwise logical complement of the address mask.

3.1.4. Device-context configuration checks

A DC with DC.tc.V=1 is considered as misconfigured if any of the following conditions are true. If
misconfigured then, stop and report "DDT entry misconfigured" (cause = 259).

1. If any bits or encodings that are reserved for future standard use are set.

2. capabilities.ATS is 0 and DC.tc.EN_ATS, or DC.tc.EN_PRI, or DC.tc.PRPR is 1

3. DC.tc.EN_ATS is 0 and DC.tc.T2GPA is 1

4. DC.tc.EN_ATS is 0 and DC.tc.EN_PRI is 1

5. DC.tc.EN_PRI is 0 and DC.tc.PRPR is 1

6. capabilities.T2GPA is 0 and DC.tc.T2GPA is 1
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7. DC.tc.T2GPA is 1 and DC.iohgatp.MODE is Bare
8. DC.tc.PDTV is 1 and DC.fsc.pdtp.MODE is not a supported mode

a. capabilities.PD20 is 0 and DC.fsc.pdtp.MODE is PD20
b. capabilities.PD17 is 0 and DC.fsc.pdtp.MODE is PD17
c. capabilities.PD8 is 0 and DC.fsc.pdtp.MODE is PD8

9. DC.tc.PDTV is 0 and DC.fsc.iosatp.MODE encoding is not a valid encoding as determined
by Table 3

10. DC.tc.PDTV is 0 and DC.tc.SXL is 0 DC.fsc.iosatp.MODE is not one of the supported
modes

a. capabilities.Sv39 is 0 and DC.fsc.iosatp.MODE is Sv39
b. capabilities.Sv48 is 0 and DC.fsc.iosatp.MODE is Sv48
c. capabilities.Sv57 is 0 and DC.fsc.iosatp.MODE is Sv57

11. DC.tc.PDTV is 0 and DC.tc.SXL is 1 DC.fsc.iosatp.MODE is not one of the supported
modes

a. capabilities.Sv32 is 0 and DC.fsc.iosatp.MODE is Sv32
12. DC.tc.PDTV is 0 and DC.tc.DPE is 1

13. DC.iohgatp.MODE encoding is not a valid encoding as determined by Table 2

14. fctl.GXL is 0 and DC.iohgatp.MODE is not a supported mode

a. capabilities.Sv39x4 is 0 and DC.iohgatp.MODE is Sv39x4
b. capabilities.Sv48x4 is 0 and DC.iohgatp.MODE is Sv48x4
c. capabilities.Sv57x4 is 0 and DC.iohgatp.MODE is Sv57x4

15. fctl.GXL is 1 and DC.iohgatp.MODE is not a supported mode

a. capabilities.Sv32x4 is 0 and DC.iohgatp.MODE is Sv32x4
16. capabilities.MSI_FLAT is 1 and DC.msiptp.MODE is not Off and not Flat
17. DC.iohgatp.MODE is not Bare and the root page table determined by DC.iohgatp.PPN is not

aligned to a 16-KiB boundary.

18. capabilities.AMO_HWAD is 0 and DC.tc.SADE or DC.tc.GADE is 1

19. capabilities.END is 0 and fctl.BE != DC.tc.SBE
20. DC.tc.SXL value is not a legal value. If fctl.GXL is 1, then DC.tc.SXL must be 1. If

fctl.GXL is 0 and is writable, then DC.tc.SXL may be 0 or 1. If fctl.GXL is 0 and is not
writable then DC.tc.SXL must be 0.

21. DC.tc.SBE value is not a legal value. If fctl.BE is writable then DC.tc.SBE may be 0 or 1. If
fctl.BE is not writable then DC.tc.SBE must be the same as fctl.BE.

22. capabilities.QOSID is 1 and DC.ta.RCID or DC.ta.MCID values are wider than that
supported by the IOMMU.
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

Some DC fields hold supervisor physical addresses or guest physical addresses. Some
implementations may verify the validity of the addresses - e.g. the supervisor physical
address is not wider than that supported as determined by capabilities.PAS, etc. at
the time of locating the DC. Such implementations may cause a "DDT entry misconfigured"
(cause = 259) fault.

Other implementations only detect such addresses to be invalid when the data structure
referenced by these fields needs to be accessed. Such implementations may detect access-
violation faults in the process of making the access.

3.2. Process-Directory-Table (PDT)

The PDT is a 1, 2, or 3-level radix-tree indexed using the process directory index (PDI) bits of the
process_id.

The following diagrams illustrate the PDT radix-tree. The root process-directory page number is
located using the process-directory-table pointer (pdtp) field of the device-context. Each non-leaf (
NL) entry provides the PPN of the next level process-directory-table. The leaf process-directory-table
entry holds the process-context (PC).

Figure 23. Three, two and single-level process directory

3.2.1. Non-leaf PDT entry

A valid (V==1) non-leaf PDT entry holds the PPN of the next-level PDT.

Figure 24. Non-leaf process-directory-table entry
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3.2.2. Leaf PDT entry

The leaf PDT page is indexed by PDI[0] and holds the 16-byte process-context (PC).

Figure 25. Process-context

The PC is interpreted as two 64-bit doublewords. The byte order of each of the doublewords in
memory, little-endian or big-endian, is the endianness as determined by DC.tc.SBE. The IOMMU
may read the PC fields in any order.

3.2.3. Process-context fields

3.2.3.1. Translation attributes (ta)

Figure 26. Translation attributes (ta) field

PC is valid if the V bit is 1; If it is 0, all other bits in PC are don’t care and may be freely used by
software.

When Enable-Supervisory-access (ENS) is 1, transactions requesting supervisor privilege are allowed
with this process_id else the transaction is treated as an unsupported request.

When ENS is 1, the SUM (permit Supervisor User Memory access) bit modifies the privilege with which
supervisor privilege transactions access virtual memory. When SUM is 0, supervisor privilege
transactions to pages mapped with U bit in PTE set to 1 are disallowed.

When ENS is 1, supervisor privilege transactions that read with execute intent to pages mapped with U
bit in PTE set to 1 are disallowed, regardless of the value of SUM.

The software assigned process soft-context ID (PSCID) is used as the address space ID for the process
identified by the first-stage page table when first-stage address translation is not Bare.
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3.2.3.2. First-Stage context (fsc)

Figure 27. Process First-Stage context

The PC.fsc field provides the controls for first-stage address translation and protection.

The PC.fsc.MODE is used to determine the first-stage paged virtual-memory scheme and its
encodings are as defined in Table 3. The DC.tc.SXL field controls the supported paged virtual-
memory schemes. When PC.fsc.MODE is not Bare, the PC.fsc.PPN field holds the PPN of the
root page of a first-stage page table.

When second-stage address translation is not Bare, the PC.fsc.PPN field holds a guest PPN of the
root of a first-stage page table. Addresses of the first-stage page table entries are then converted by
guest physical address translation process, as controlled by the DC.iohgatp, into a supervisor
physical address. A guest OS may thus directly edit the first-stage page table to limit access by the
device to a subset of its memory and specify permissions for the device accesses.



The PC.ta.PSCID identifies an address space. If an identical PSCID is configured in
two PC when the page-table referenced by the two PC are not identical then it is
unpredictable whether the IOMMU uses the PTEs from the first page table or the second
page table. These are the only expected behaviors.

3.2.4. Process-context configuration checks

A PC with PC.ta.V=1 is considered as misconfigured if any of the following conditions are true. If
misconfigured then stop and report "PDT entry misconfigured" (cause = 267).

1. If any bits or encoding that are reserved for future standard use are set

2. PC.fsc.MODE encoding is not valid as determined by Table 3

3. DC.tc.SXL is 0 and PC.fsc.MODE is not one of the supported modes

a. capabilities.Sv39 is 0 and PC.fsc.MODE is Sv39
b. capabilities.Sv48 is 0 and PC.fsc.MODE is Sv48
c. capabilities.Sv57 is 0 and PC.fsc.MODE is Sv57

4. DC.tc.SXL is 1 and PC.fsc.MODE is not one of the supported modes

a. capabilities.Sv32 is 0 and PC.fsc.MODE is Sv32
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

Some PC fields hold supervisor physical addresses or guest physical addresses. Some
implementations may verify the validity of the addresses - e.g. the supervisor physical
address is not wider than that supported as determined by capabilities.PAS, etc. at
the time of locating the PC. Such implementations may cause a "PDT entry misconfigured"
(cause = 267) fault.

Other implementations only detect such addresses to be invalid when the data structure
referenced by these fields needs to be accessed. Such implementations may detect access-
violation faults in the process of making the access.

3.3. Process to translate an IOVA

The process to translate an IOVA uses the hardware IDs (device_id and process_id) to locate the
Device-Context and the Process-Context. The Device-context and Process-context provide the root
PPN of the page tables, PSCID, GSCID, and other control parameters that affect the address
translation and protection process. When address translation caches (Section 3.8) are implemented,
the translation process may use the GSCID and PSCID to associate the cached translations with their
address spaces.

The process to translate an IOVA is as follows:

1. If ddtp.iommu_mode == Off then stop and report "All inbound transactions disallowed"
(cause = 256).

2. If ddtp.iommu_mode == Bare and any of the following conditions hold then stop and report
"Transaction type disallowed" (cause = 260); else go to step 20 with translated address same as the
IOVA.

a. Transaction type is a Translated request (read, write/AMO, read-for-execute) or is a PCIe ATS
Translation request.

3. If capabilities.MSI_FLAT is 0 then the IOMMU uses base-format device context. Let
DDI[0] be device_id[6:0], DDI[1] be device_id[15:7], and DDI[2] be
device_id[23:16].

4. If capabilities.MSI_FLAT is 1 then the IOMMU uses extended-format device context. Let
DDI[0] be device_id[5:0], DDI[1] be device_id[14:6], and DDI[2] be
device_id[23:15].

5. If the device_id is wider than that supported by the IOMMU mode, as determined by the
following checks then stop and report "Transaction type disallowed" (cause = 260).

a. ddtp.iommu_mode is 2LVL and DDI[2] is not 0

b. ddtp.iommu_mode is 1LVL and either DDI[2] is not 0 or DDI[1] is not 0

6. Use device_id to then locate the device-context (DC) as specified in Section 3.3.1.

7. If any of the following conditions hold then stop and report "Transaction type disallowed" (cause =
260).

a. Transaction type is a Translated request (read, write/AMO, read-for-execute) or is a PCIe ATS
Translation request and DC.tc.EN_ATS is 0.

b. Transaction has a valid process_id and DC.tc.PDTV is 0.
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c. Transaction has a valid process_id and DC.tc.PDTV is 1 and the process_id is wider
than that supported by pdtp.MODE.

d. Transaction type is not supported by the IOMMU.

8. If request is a Translated request and DC.tc.T2GPA is 0 then the translation process is complete.
Go to step 20.

9. If request is a Translated request and DC.tc.T2GPA is 1 then the IOVA is a GPA. Go to step 17
with following page table information:

a. Let A be the IOVA (the IOVA is a GPA).

b. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.

c. Let iohgatp be the value in the DC.iohgatp field

10. If DC.tc.PDTV is set to 0 then go to step 17 with the following page table information:

a. Let iosatp.MODE be the value in the DC.fsc.MODE field

b. Let iosatp.PPN be the value in the DC.fsc.PPN field

c. Let PSCID be the value in the DC.ta.PSCID field

d. Let iohgatp be the value in the DC.iohgatp field

11. If DPE is 1 and there is no process_id associated with the transaction then let process_id be
the default value of 0.

12. If DPE is 0 and there is no process_id associated with the transaction then then go to step 17
with the following page table information:

a. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.

b. Let iohgatp be the value in the DC.iohgatp field

13. If DC.fsc.pdtp.MODE = Bare then go to step 17 with the following page table information:

a. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.

b. Let iohgatp be value in DC.iohgatp field

14. Locate the process-context (PC) as specified in Section 3.3.2.

15. if any of the following conditions hold then stop and report "Transaction type disallowed" (cause =
260).

a. The transaction requests supervisor privilege but PC.ta.ENS is not set.

16. Go to step 17 with the following page table information:

a. Let iosatp.MODE be the value in the PC.fsc.MODE field

b. Let iosatp.PPN be the value in the PC.fsc.PPN field

c. Let PSCID be the value in the PC.ta.PSCID field
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d. Let iohgatp be the value in the DC.iohgatp field

17. Use the process specified in Section "Two-Stage Address Translation" of the RISC-V Privileged
specification [4] to determine the GPA accessed by the transaction. If a fault is detected by the first
stage address translation process then stop and report the fault. If the translation process is
completed successfully then let A be the translated GPA.

18. If MSI address translations using MSI page tables is enabled (i.e., DC.msiptp.MODE != Off)
then the MSI address translation process specified in Section 3.3.3 is invoked. If the GPA A is not
determined to be the address of a virtual interrupt file then the process continues at step 19. If a
fault is detected by the MSI address translation process then stop and report the fault else the
process continues at step 20.

19. Use the second-stage address translation process specified in Section "Two-Stage Address
Translation" of the RISC-V Privileged specification [4] to translate the GPA A to determine the SPA
accessed by the transaction. If a fault is detected by the address translation process then stop and
report the fault.

20. Translation process is complete

When checking the U bit in a second-stage PTE, the transaction is treated as not requesting supervisor
privilege. The pte.xwr=010 encoding, as specified by the Zicfiss [5] extension for the Shadow Stack
page type in single-stage and VS-stage page tables, remains a reserved encoding for IO transactions.

When the translation process reports a fault, and the request is an Untranslated request or a
Translated request, the IOMMU requests the IO bridge to abort the transaction. Guidelines for
handling faulting transactions in the IO bridge are provided in Section 8.3. The fault may be reported
using the fault/event reporting mechanism and fault record formats specified in Section 4.2.

If the fault was detected by a PCIe ATS Translation Request then the IOMMU may provide a PCIe
protocol defined response instead of reporting fault to software or causing an abort. The handling of
faulting PCIe ATS Translation Requests is specified in Section 3.6.

3.3.1. Process to locate the Device-context

The process to locate the Device-context for transaction using its device_id is as follows:

1. Let a be ddtp.PPN x 212 and let i = LEVELS - 1. When ddtp.iommu_mode is 3LVL,
LEVELS is three. When ddtp.iommu_mode is 2LVL, LEVELS is two. When ddtp.iommu_mode
is 1LVL, LEVELS is one.

2. If i == 0 go to step 8.

3. Let ddte be the value of the eight bytes at address a + DDI[i] x 8. If accessing ddte violates
a PMA or PMP check, then stop and report "DDT entry load access fault" (cause = 257).

4. If ddte access detects a data corruption (a.k.a. poisoned data), then stop and report "DDT data
corruption" (cause = 268).

5. If ddte.V == 0, stop and report "DDT entry not valid" (cause = 258).

6. If any bits or encoding that are reserved for future standard use are set within ddte, stop and
report "DDT entry misconfigured" (cause = 259).

7. Let i = i - 1 and let a = ddte.PPN x 212. Go to step 2.
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8. Let DC be the value of DC_SIZE bytes at address a + DDI[0] * DC_SIZE. If
capabilities.MSI_FLAT is 1 then DC_SIZE is 64-bytes else it is 32-bytes. If accessing DC
violates a PMA or PMP check, then stop and report "DDT entry load access fault" (cause = 257). If
DC access detects a data corruption (a.k.a. poisoned data), then stop and report "DDT data
corruption" (cause = 268).

9. If DC.tc.V == 0, stop and report "DDT entry not valid" (cause = 258).

10. If the DC is misconfigured as determined by rules outlined in Section 3.1.4 then stop and report
"DDT entry misconfigured" (cause = 259).

11. The device-context has been successfully located.

3.3.2. Process to locate the Process-context

The device-context provides the PDT root page PPN (pdtp.ppn). When DC.iohgatp.mode is not
Bare, pdtp.PPN as well as pdte.PPN are Guest Physical Addresses (GPA) which must be translated
into Supervisor Physical Addresses (SPA) using the second-stage page table pointed to by
DC.iohgatp. The memory accesses to the PDT are treated as implicit read memory accesses by the
second-stage.

The process to locate the Process-context for a transaction using its process_id is as follows:

1. Let a be pdtp.PPN x 212 and let i = LEVELS - 1. When pdtp.MODE is PD20, LEVELS is
three. When pdtp.MODE is PD17, LEVELS is two. When pdtp.MODE is PD8, LEVELS is one.

2. If DC.iohgatp.mode != Bare, then a is a GPA. Invoke the process to translate a to a SPA as
an implicit memory access. If faults occur during second-stage address translation of a then stop
and report the fault detected by the second-stage address translation process. The translated a is
used in subsequent steps.

3. If i == 0 go to step 9.

4. Let pdte be the value of the eight bytes at address a + PDI[i] x 8. If accessing pdte violates
a PMA or PMP check, then stop and report "PDT entry load access fault" (cause = 265).

5. If pdte access detects a data corruption (a.k.a. poisoned data), then stop and report "PDT data
corruption" (cause = 269).

6. If pdte.V == 0, stop and report "PDT entry not valid" (cause = 266).

7. If any bits or encoding that are reserved for future standard use are set within pdte, stop and
report "PDT entry misconfigured" (cause = 267).

8. Let i = i - 1 and let a = pdte.PPN x 212. Go to step 2.

9. Let PC be the value of the 16-bytes at address a + PDI[0] x 16. If accessing PC violates a PMA
or PMP check, then stop and report "PDT entry load access fault" (cause = 265). If PC access detects
a data corruption (a.k.a. poisoned data), then stop and report "PDT data corruption" (cause = 269).

10. If PC.ta.V == 0, stop and report "PDT entry not valid" (cause = 266).

11. If the PC is misconfigured as determined by rules outlined in Section 3.2.4 then stop and report
"PDT entry misconfigured" (cause = 267).

12. The Process-context has been successfully located.
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3.3.3. Process to translate addresses of MSIs

When an I/O device is configured directly by a guest operating system, MSIs from the device are
expected to be targeted to virtual IMSICs within the guest OS’s virtual machine, using guest physical
addresses that are inappropriate and unsafe for the real machine. An IOMMU must recognize certain
incoming writes from such devices as MSIs and convert them as needed for the real machine.

MSIs originating from a single device that require conversion are expected to have been configured at
the device by a single guest OS running within one RISC-V virtual machine. Assuming the VM itself
conforms to the RISC-V Advanced Interrupt Architecture [3], MSIs are sent to virtual harts within the
VM by writing to the memory-mapped registers of the interrupt files of virtual IMSICs. Each of these
virtual interrupt files occupies a separate 4-KiB page in the VM’s guest physical address space, the
same as real interrupt files do in a real machine’s physical address space. A write to a guest physical
address can thus be recognized as an MSI to a virtual hart if the write is to a page occupied by an
interrupt file of a virtual IMSIC within the VM.

When MSI address translation is supported (capabilities.MSI_FLAT, Section 6.3), the process to
identify an incoming IOVA as the address of a virtual interrupt file and translating the address using
the MSI page table is as follows:

1. Let A be the GPA
2. Let DC be the device-context located using the device_id of the device using the process

outlined in Section 3.3.1.

3. Determine if the address A is an access to a virtual interrupt file as specified in Section 3.1.3.6.

4. If the address is not determined to be that of a virtual interrupt file then stop this process and
instead use the regular translation data structures to do the address translation.

5. Extract an interrupt file number I from A as I = extract(A >> 12,
DC.msi_addr_mask). The bit extract function extract(x, y) discards all bits from x whose
matching bits in the same positions in the mask y are zeros, and packs the remaining bits from x
contiguously at the least-significant end of the result, keeping the same bit order as x and filling
any other bits at the most-significant end of the result with zeros. For example, if the bits of x and
y are:

⚫ x = a b c d e f g h
⚫ y = 1 0 1 0 0 1 1 0
⚫ then the value of extract(x, y) has bits 0 0 0 0 a c f g.

6. Let m be (DC.msiptp.PPN x 212).

7. Let msipte be the value of sixteen bytes at address (m | (I x 16)). If accessing msipte
violates a PMA or PMP check, then stop and report "MSI PTE load access fault" (cause = 261).

8. If msipte access detects a data corruption (a.k.a. poisoned data), then stop and report "MSI PT
data corruption" (cause = 270).

9. If msipte.V == 0, then stop and report "MSI PTE not valid" (cause = 262).

10. If msipte.C == 1, then further processing to interpret the PTE is implementation defined.

11. If msipte.C == 0 then the process is outlined in subsequent steps.
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12. If msipte.M == 0 or msipte.M == 2, then stop and report "MSI PTE misconfigured" (cause =
263).

13. If msipte.M == 3 the PTE is in basic translate mode and the translation process is as follows:

a. If any bits or encoding that are reserved for future standard use are set within msipte, stop
and report "MSI PTE misconfigured" (cause = 263).

b. Compute the translated address as msipte.PPN << 12 | A[11:0].

14. If msipte.M == 1 the PTE is in MRIF mode and the translation process is as follows:

a. If capabilities.MSI_MRIF == 0, stop and report "MSI PTE misconfigured" (cause =
263).

b. If any bits or encoding that are reserved for future standard use are set within msipte, stop
and report "MSI PTE misconfigured" (cause = 263).

c. The address of the destination MRIF is msipte.MRIF_Address[55:9] * 512.

d. The destination address of the notice MSI is msipte.NPPN << 12.

e. Let NID be (msipte.N10 << 10) | msipte.N[9:0]. The data value for notice MSI is
the 11-bit NID value zero-extended to 32-bits.

15. The access permissions associated with the translation determined through this process are
equivalent to that of a regular RISC-V second-stage PTE with R=W=U=1 and X=0. Similar to a
second-stage PTE, when checking the U bit, the transaction is treated as not requesting supervisor
privilege.

a. If the transaction is an Untranslated or Translated read-for-execute then stop and report
"Instruction access fault" (cause = 1).

16. MSI address translation process is complete.



In MRIF mode, the Advanced Interrupt Architecture Specification defines the operation to
store the incoming MSIs into the destination MRIF and to generate the notice MSI. These
operations may be performed by the IOMMU itself or the IOMMU may provide the
destination MRIF address, the notice MSI address, and the notice MSI data value to the
I/O bridge in response to the translation request and the operations may be performed by
the I/O bridge.

3.4. IOMMU updating of PTE accessed (A) and dirty (D) updates

When capabilities.AMO_HWAD is 1, the IOMMU supports updating the A and D bits in PTEs
atomically. When updating of A and D bits in second-stage PTEs is enabled (DC.tc.GADE=1) and/or
updating of A and D bits in first-stage PTEs is enabled (DC.tc.SADE=1) the following rules apply:

1. The A and/or D bit updates by the IOMMU must follow the rules specified by the Privileged
specification for validity, permission checking, and atomicity.

2. The PTE update must be globally visible before a memory access using the translated address
provided by the IOMMU becomes globally visible. Specifically, when a translated address is
provided to a device in an ATS Translation completion, the PTE update must be globally visible
before a memory access from the device using the translated address becomes globally visible.
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

The A and D bits are never cleared by the IOMMU. If the supervisor software does not rely
on accessed and/or dirty bits, e.g. if it does not swap memory pages to secondary storage
or if the pages are being used to map I/O space, it should set them to 1 in the PTE to
improve performance.

3.5. Faults from virtual address translation process

Faults detected during the two-stage address translation specified in the RISC-V Privileged
specification [4] cause the IOVA translation process to stop and report the detected fault.

3.6. PCIe ATS translation request handling

ATS [2] translation requests that encounter a configuration error results in a Completer Abort (CA)
response to the requester. The following cause codes belong to this category:

⚫ Instruction access fault (cause = 1)

⚫ Read access fault (cause = 5)

⚫ Write/AMO access fault (cause = 7)

⚫ MSI PTE load access fault (cause = 261)

⚫ MSI PTE misconfigured (cause = 263)

⚫ PDT entry load access fault (cause = 265)

⚫ PDT entry misconfigured (cause = 267)

If there is a permanent error or if ATS transactions are disabled then an Unsupported Request (UR)
response is generated. The following cause codes belong to this category:

⚫ All inbound transactions disallowed (cause = 256)

⚫ DDT entry load access fault (cause = 257)

⚫ DDT entry not valid (cause = 258)

⚫ DDT entry misconfigured (cause = 259)

⚫ Transaction type disallowed (cause = 260)

When translation could not be completed due to the following causes a Success Response with R and
W bits set to 0 is generated. No faults are logged in the fault queue on these errors. The translated
address returned with such completions is UNSPECIFIED.

⚫ Instruction page fault (cause = 12)

⚫ Read page fault (cause = 13)

⚫ Write/AMO page fault (cause = 15)

⚫ Instruction guest page fault (cause = 20)

⚫ Read guest-page fault (cause = 21)

⚫ Write/AMO guest-page fault (cause = 23)

⚫ PDT entry not valid (cause = 266)

⚫ MSI PTE not valid (cause = 262)

3.5. Faults from virtual address translation process | Page 38

RISC-V IOMMU Architecture Specification | © RISC-V International



If the translation request has a PASID with "Privilege Mode Requested" field set to 0, or the request
does not have a PASID then the request does not target privileged memory. If the U-bit that indicates
if the memory is accessible to user mode is 0 then a Success response with R and W bits set to 0 is
generated.

If the translation request has a PASID with "Privilege Mode Requested" field set to 1, then the request
targets privileged memory. If the U-bit that indicates if the page is accessible to user mode is 1 and the
SUM bit in the ta field of the process-context is 0 then a Success response with R and W bits set to 0 is
generated.

If the translation could be successfully completed but the requested permissions are not present in
either stage (Execute requested but no execute permission; no-write not requested and no write
permission; no read permission) then a Success response is returned with the denied permission (R, W
or X) set to 0 and the other permission bits set to the value determined from the page tables. The X
permission is granted only if the R permission is also granted and the execute permission was
requested. Execute-only translations are not compatible with PCIe ATS as PCIe requires read
permission to be granted if the execute permission is granted.

When a Success response is generated for an ATS translation request, no fault records are reported to
software through the fault/event reporting mechanism, even when the response indicates no access
was granted or some permissions were denied. Conversely, when a UR or CA response is generated for
an ATS translation request, the corresponding fault is reported to software through the fault/event
reporting mechanism.

If the translation request has an address determined to be an MSI address using the rules defined by
the Section 3.1.3.6 but the MSI PTE is configured in MRIF mode then a Success response is generated
with R, W, and U bit set to 1. The U bit being set to 1 in the response instructs the device that it must
only use Untranslated requests to access the implied 4 KiB memory range.



When a MSI PTE is configured in MRIF mode, a MSI write with data value D requires the
IOMMU to set the interrupt-pending bit for interrupt identity D in the MRIF. A translation
request from a device to a GPA that is mapped through a MRIF mode MSI PTE is not
eligible to receive a translated address. This is accomplished by setting "Untranslated
Access Only" (U) field of the returned response to 1.

When a Success response is generated for an ATS translation request, the setting of the Priv, N, CXL.io,
Global, and AMA fields is as follows:

⚫ Priv field of the ATS translation completion is always set to 0 if the request does not have a PASID.
When a PASID is present then the Priv field is set to the value in "Privilege Mode Requested" field
as the permissions provided correspond to those the privilege mode indicate in the request.

⚫ N field of the ATS translation completion is always set to 0. The device may use other means to
determine if the No-snoop flag should be set in the translated requests.

⚫ Global field is set to the value determined from the first-stage page tables if translation could be
successfully completed and the request had a PASID present. In all other cases, including MSI
address translations, this field is set to 0.

⚫ If requesting device is not a CXL device then CXL.io is set to 0.

⚫ If requesting device is a CXL type 1 or type 2 device

⚫ If the address is determined to be a MSI then the CXL.io bit is set to 1.

⚫ Else if T2GPA is 1 in the device context then the CXL.io bit is set to 1.
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⚫ Else if the memory type, as determined by the Svpbmt extension, is NC or IO then the CXL.io
bit is set to 1. If the memory type is PMA then the determination of the setting of this bit is
UNSPECIFIED. If the Svpbmt extension is not supported then the setting of this bit is
UNSPECIFIED.

⚫ In all other cases the setting of this bit is UNSPECIFIED.

⚫ The AMA field is by default set to 000b. The IOMMU may support an implementation-specific
method to provide other encodings.



The IO bridge may override the CXL.io bit in the ATS translation completion based on the
PMA of the translated address. Other implementations may provide an implementation-
defined method for determining PMA for the translated address to set the CXL.io bit.

Use of T2GPA set to 1 may not be compatible with CXL type 1 or type 2 devices as they use
the CXL.cache protocol to implement caches tagged by the translated address returned in
response to a PCIe ATS Translation Request. The IOMMU may not be invoked for
translating addresses in CXL.cache transactions.

3.7. PCIe ATS Page Request handling

To process a "Page Request" or "Stop Marker" message [2], the IOMMU first locates the device-context
to determine if ATS and PRI are enabled for the requester. If ATS and PRI are enabled, i.e. EN_ATS
and EN_PRI are both set to 1, the IOMMU queues the message into an in-memory queue called the
page-request-queue (PQ) (See Section 4.3). Following suitable processing of the "Page Request", a
software handler may generate a "Page Request Group Response" message to the device.

When PRI is enabled for a device, the IOMMU may still be unable to report "Page Request" or "Stop
Marker" messages through the PQ due to error conditions such as the queue being disabled, queue
being full, or the IOMMU encountering access faults when attempting to access queue memory. These
error conditions are specified in Section 4.3.

If the ddtp.iommu_mode is Bare or is Off, then the IOMMU cannot locate a device-context for the
requester.

If EN_PRI is set to 0, or EN_ATS is set to 0, or if the IOMMU is unable to locate the DC to determine
the EN_PRI configuration, or the request could not be queued into PQ then the IOMMU behavior
depends on the type of "Page Request".

⚫ If the "Page Request" does not require a response, i.e. the "Last Request in PRG" field of the message
is set to 0, then such messages are silently discarded. "Stop Marker" messages do not require a
response and are always silently discarded on such errors.

⚫ If the "Page Request" needs a response, then the IOMMU itself may generate a "Page Request Group
Response" message to the device.

When the IOMMU generates the response, the status field of the response depends on the cause of the
error. If a fault condition prevents locating a valid device context then the PRPR value assumed is 0.
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The status is set to Response Failure if the following faults are encountered:

⚫ ddtp.iommu_mode is Off (cause = 256)

⚫ DDT entry load access fault (cause = 257)

⚫ DDT entry misconfigured (cause = 259)

⚫ DDT entry not valid (cause = 258)

⚫ Page-request queue is not enabled (pqcsr.pqen == 0 or pqcsr.pqon == 0)

⚫ Page-request queue encountered a memory access fault (pqcsr.pqmf == 1)

The status is set to Invalid Request if the following faults are encountered:

⚫ ddtp.iommu_mode is Bare (cause = 260)

⚫ EN_PRI is set to 0 (cause = 260)

The status is set to Success if no other faults were encountered but the "Page Request" could not be
queued due to the page-request queue being full (pqt == pqh - 1) or had a overflow
(pqcsr.pqof == 1).



When SR-IOV VF is used as a unit of allocation, a hypervisor may disable page requests
from one of the virtual functions by setting EN_PRI to 0. However the page-request
interface is shared by the PF and all VFs. The IOMMU protocol specific logic classifies this
condition (cause = 260) as a non-catastrophic failure, an Invalid Request, in its response
to avoid the shared PRI in the device being disabled for all PFs/VFs.


A "Stop Marker" is encoded as a "Page Request" with a PASID but with the L, W, and R
fields set to 1, 0, and 0 respectively.

For IOMMU-generated "Page Request Group Response" messages that have status Invalid Request or
Success, the PRG-response-PASID-required (PRPR) bit when set to 1 indicates that the IOMMU
response message should include a PASID if the associated "Page Request" had a PASID.

For IOMMU-generated "Page Request Group Response" with response code set to Response Failure, if
the "Page Request" had a PASID then response is generated with a PASID.

No faults are logged in the fault queue for PCIe ATS "Page Request" messages for the following
conditions:

⚫ Page-request queue is not enabled (pqcsr.pqen == 0 or pqcsr.pqon == 0)

⚫ Page-request queue encountered a memory access fault (pqcsr.pqmf == 1)

⚫ "Page Request" could not be queued due to the page-request queue being full (pqt == pqh - 1)
or had a overflow (pqcsr.pqof == 1).
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3.8. Caching in-memory data structures

To speed up Direct Memory Access (DMA) translations, the IOMMU may make use of translation
caches to hold entries from device-directory-table, process-directory-table, first-stage and second-
stage translation tables, and MSI page tables. These caches are collectively referred to as the IOMMU
Address Translation Caches (IOATC).

This specification does not allow the caching of first/second-stage PTEs whose V (valid) bit is clear,
non-leaf DDT entries whose V (valid) bit is clear, Device-context whose V (valid) bit is clear, non-leaf
PDT entries whose V (valid) bit is clear, Process-context whose V (valid) bit is clear, or MSI PTEs whose
V bit is clear.

These IOATC do not observe modifications to the in-memory data structures using explicit loads and
stores by RISC-V harts or by device DMA. Software must use the IOMMU commands to invalidate the
cached data structure entries using IOMMU commands to synchronize the IOMMU operations to
observe updates to in-memory data structures. A simpler implementation may not implement IOATC
for some or any of the in-memory data structures. The IOMMU commands may use one or more IDs
to tag the cached entries to identify a specific entry or a group of entries.

Table 6. Identifiers used to tag IOATC entries

Data Structure cached IDs used to tag entries Invalidation command

Device Directory Table device_id IODIR.INVAL_DDT

Process Directory Table device_id, process_id IODIR.INVAL_PDT

First-stage page table (when second-stage is not Bare) GSCID, PSCID, and IOVA IOTINVAL.VMA

First-stage page table (when second-stage is Bare) PSCID, and IOVA IOTINVAL.VMA

Second-stage page table GSCID, GPA IOTINVAL.GVMA

MSI page table GSCID, GPA IOTINVAL.GVMA

3.9. Updating in-memory data structure entries

The RISC-V memory model requires memory access from a hart to be single-copy atomic. When RV32
is implemented the size of a single-copy atomic memory access is up to 32-bits. When RV64 is
implemented the size of a single-copy atomic memory access is up to 64-bits. The size of a single-copy
atomic memory access implemented by the IOMMU is UNSPECIFIED but is required to be at least
32-bits if all of the harts in the system implement RV32 and is required to be at least 64-bits if any of
the harts in the system implement RV64.

The IOMMU data structure entries have a V bit that when set to 1 indicates that the entry is valid.

Software is allowed to make updates to a data structure entry that has the V bit set to 1. However, some
rules as outlined below must be followed.

⚫ It is generally unsafe for software to update fields of a valid data structure entry using a set of
stores of width less than the minimal single-copy atomic memory access supported by an IOMMU
as it is legal for an IOMMU to read the entry at any time, including when only some of the partial
stores have taken effect.

⚫ For an update to an IOMMU data structure entry to be atomic, software must use a single store of
width equal to the minimal single-copy atomic memory access supported by an IOMMU.
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⚫ If the update to a field will make the field inconsistent with another field of the entry then software
must first set the V field to 0 and use the commands outlined in Section 3.8 to invalidate any
previous copies of that entry that may be in IOMMU caches before updating other fields of that
entry.

⚫ The IOMMU is not required to immediately observe the software update to an entry. Software
must use the commands outlined in Section 3.8 to invalidate any previous copies of that entry that
may be in IOMMU caches to synchronize the updates to the entry with the operation of the
IOMMU.



If a data structure entry is changed, the IOMMU may use the old value of the entry or the
new value of the entry and the choice is unpredictable until software uses the commands
outlined in Section 3.8 to invalidate any previous copies of that entry that may be in
IOMMU caches to synchronize updates to the entry with the operation of the IOMMU.
These are the only behaviors expected.

3.10. Endianness of in-memory data structures

The RISC-V memory model specifies byte-invariance for the entire address space. When mixed-
endian mode of operation is supported, the IO bridge and the IOMMU must implement byte-invariant
addressing such that a byte access to a given address accesses the same memory location in both little-
endian and big-endian mode of operation.

The endianness of implicit memory access to in-memory data structures is determined by fctl.BE
or by DC.tc.SBE as follows:

Table 7. Endianness of memory access to data structures

Data Structure Controlled by

Device directory table fctl.BE

Second-stage page table fctl.BE

MSI page table fctl.BE

Process directory Table DC.tc.SBE

First-stage page table DC.tc.SBE



The PSCID field of first-stage context, along with the GSCID (when two-stage address
translation is active), identifies an address space. Configuring an identical GSCID and
PSCID in two DC but with different SBE is not expected and if done may lead to the
IOMMU interpreting a first-stage PTE as big-endian or little-endian. These are the only
behaviors expected.



Software must use an appropriate software sequence to swap bytes as necessary to create
a mutually agreed to data representation when sharing data with an IO agent that does
not share its endianness. Software must use an LR/SC sequence to perform atomic
operations in non-native endian format when the data shared with such IO agents must
be accessed atomically.
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Chapter 4. In-memory queue interface

Software and IOMMU interact using 3 in-memory queue data structures.

⚫ A command-queue (CQ) used by software to queue commands to the IOMMU.

⚫ A fault/event queue (FQ) used by IOMMU to bring faults and events to software’s attention.

⚫ A page-request queue (PQ) used by IOMMU to report “Page Request” messages received from PCIe
devices. This queue is supported if the IOMMU supports PCIe [2] defined Page Request Interface.

Figure 28. IOMMU in-memory queues

Each queue is a circular buffer with a head controlled by the consumer of data from the queue and a
tail controlled by the producer of data into the queue. IOMMU is the producer of records into PQ and
FQ and controls the tail register. IOMMU is the consumer of commands produced by software into the
CQ and controls the head register. The tail register holds the index into the queue where the next
entry will be written by the producer. The head register holds the index into the queue where the
consumer will read the next entry to process.

A queue is empty if the head is equal to the tail. A queue is full if the tail is the head minus one. The
head and tail wrap around when they reach the end of the circular buffer.

The producer of data must ensure that the data written to a queue and the tail update are ordered such
that the consumer that observes an update to the tail register must also observe all data produced into
the queue between the offsets determined by the head and the tail.
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
All RISC-V IOMMU implementations are required to support in-memory queues located in
main memory. Supporting in-memory queues in I/O memory is not required but is not
prohibited by this specification.

4.1. Command-Queue (CQ)

Command queue is used by software to queue commands to be processed by the IOMMU. Each
command is 16 bytes.

The PPN of the base of this in-memory queue and the size of the queue is configured into a memory-
mapped register called command-queue base (cqb).

The tail of the command-queue resides in a software-controlled read/write memory-mapped register
called command-queue tail (cqt). The cqt is an index into the next command queue entry that
software will write. Subsequent to writing the command(s), software advances the cqt by the count of
the number of commands written.

The head of the command-queue resides in a read-only memory-mapped IOMMU controlled register
called command-queue head (cqh). The cqh is an index into the command queue that IOMMU
should process next. Subsequent to reading each command the IOMMU may advance the cqh by 1. If
cqh == cqt, the command-queue is empty. If cqt == (cqh - 1) the command-queue is full.

When an error bit or the fence_w_ip bit in cqcsr is 1, the command-queue interrupt pending (
cip) bit is set in the ipsr if interrupts from command-queue are enabled (i.e. cqcsr.cie is 1).

IOMMU commands are grouped into a major command group determined by the opcode and within
each group the func3 field specifies the function invoked by that command. The opcode defines the
format of the operand fields. One or more of those fields may be used by the specific function invoked.
The opcode encodings 64 to 127 are designated for custom use.

Figure 29. Format of an IOMMU command

The commands are interpreted as two 64-bit doublewords. The byte order of each of the doublewords
in memory, little-endian or big-endian, is the endianness as determined by fctl.BE (Section 6.4).

The following command opcodes are defined:

Table 8. IOMMU command opcodes

opcode Encoding Description

IOTINVAL 1 IOMMU page-table cache invalidation commands.

IOFENCE 2 IOMMU command-queue fence commands.

IODIR 3 IOMMU directory cache invalidation commands.

ATS 4 IOMMU PCIe [2] ATS commands.
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opcode Encoding Description

Reserved 5-63 Reserved for future standard use.

Custom 64-127 Designated for custom use.

All undefined functions of command opcodes 0 through 63 are reserved for future standard use.

A command is determined to be illegal if it uses a reserved encoding or if a reserved bit is set to 1. A
command is unsupported if it is defined but not implemented as determined by the IOMMU
capabilities register. If an illegal or unsupported command is fetched and decoded by the
command-queue then the command-queue sets the cqcsr.cmd_ill bit and stops processing
commands from the command-queue. To re-enable command processing software should clear the
cmd_ill bit by writing 1 to it.

4.1.1. IOMMU Page-Table cache invalidation commands

IOMMU operations cause implicit reads to PDT, first-stage and second-stage page tables. To reduce
latency of such reads, the IOMMU may cache entries from the first-stage and/or second-stage page
tables in the IOMMU-address-translation-cache (IOATC). These caches might not observe
modifications performed by software to these data structures in memory.

The IOMMU translation-table cache invalidation commands, IOTINVAL.VMA and IOTINVAL.GVMA
synchronize updates to in-memory first-stage and second-stage page table data structures respectively
with the operation of the IOMMU and invalidate the matching IOATC entries.

The GV operand indicates if the Guest-Soft-Context ID (GSCID) operand is valid. The PSCV operand
indicates if the Process Soft-Context ID (PSCID) operand is valid. Setting PSCV to 1 is allowed only for
IOTINVAL.VMA. The AV operand indicates if the address (ADDR) operand is valid. When GV is 0, the
translations associated with the host (i.e. those where the second-stage is Bare) are operated on. When
GV is 0, the GSCID operand is ignored. When AV is 0, the ADDR operand is ignored. When PSCV
operand is 0, the PSCID operand is ignored. When the AV operand is set to 1, if the ADDR operand
specifies an invalid address, the command may or may not perform any invalidations.



When an invalid address is specified, an implementation may either complete the
command with no effect or may complete the command using an alternate, yet
UNSPECIFIED, legal value for the address. Note that entries may generally be
invalidated from the address translation cache at any time.
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IOTINVAL.VMA ensures that previous stores made to the first-stage page tables by the harts are
observed by the IOMMU before all subsequent implicit reads from IOMMU to the corresponding first-
stage page tables.

Table 9. IOTINVAL.VMA operands and operations

GV AV PSCV Operation

0 0 0 Invalidates all address-translation cache entries, including those that contain global mappings,
for all host address spaces.

0 0 1 Invalidates all address-translation cache entries for the host address space identified by PSCID
operand, except for entries containing global mappings.

0 1 0 Invalidates all address-translation cache entries that contain first-stage leaf page table entries,
including those that contain global mappings, corresponding to the IOVA in ADDR operand, for
all host address spaces.

0 1 1 Invalidates all address-translation cache entries that contain first-stage leaf page table entries
corresponding to the IOVA in ADDR operand and that match the host address space identified by
PSCID operand, except for entries containing global mappings.

1 0 0 Invalidates all address-translation cache entries, including those that contain global mappings,
for all VM address spaces associated with GSCID operand.

1 0 1 Invalidates all address-translation cache entries for the VM address space identified by PSCID
and GSCID operands, except for entries containing global mappings.

1 1 0 Invalidates all address-translation cache entries that contain first-stage leaf page table entries,
including those that contain global mappings, corresponding to the IOVA in ADDR operand, for
all VM address spaces associated with the GSCID operand.

1 1 1 Invalidates all address-translation cache entries that contain first-stage leaf page table entries
corresponding to the IOVA in ADDR operand, for the VM address space identified by PSCID and
GSCID operands, except for entries containing global mappings.

IOTINVAL.GVMA ensures that previous stores made to the second-stage page tables are observed
before all subsequent implicit reads from IOMMU to the corresponding second-stage page tables.
Setting PSCV to 1 with IOTINVAL.GVMA is illegal.

Table 10. IOTINVAL.GVMA operands and operations

GV AV Operation

0 ignored Invalidates information cached from any level of the second-stage page table, for all VM address
spaces.

1 0 Invalidates information cached from any level of the second-stage page tables, but only for VM
address spaces identified by the GSCID operand.

1 1 Invalidates information cached from leaf second-stage page table entries corresponding to the
guest-physical-address in ADDR operand, but only for VM address spaces identified by the GSCID
operand.



Conceptually, an implementation might contain two address-translation caches: one that
maps guest virtual addresses to guest physical addresses, and another that maps guest
physical addresses to supervisor physical addresses. IOTINVAL.GVMA need not
invalidate the former cache, but it must invalidate entries from the latter cache that match
the IOTINVAL.GVMA address and GSCID operands.
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

More commonly, implementations contain address-translation caches that map guest
virtual addresses directly to supervisor physical addresses, removing a level of indirection.
For such implementations, any entry whose guest virtual address maps to a guest physical
address that matches the IOTINVAL.GVMA address and GSCID arguments must be
invalidated. Selectively invalidating entries in this fashion requires tagging them with the
guest physical address, which is costly, and so a common technique is to invalidate all
entries that match the GSCID argument, regardless of the address argument.

Simpler implementations may ignore the operand of IOTINVAL.VMA and/or
IOTINVAL.GVMA and perform a global invalidation of all address-translation entries.

Some implementations may cache an identity-mapped translation for the stage of address
translation operating in Bare mode. Since these identity mappings are invariably correct,
an explicit invalidation is unnecessary.

Some implementations may cache an identity-mapped translation for the stage of address
translation operating in Bare mode. Since these identity mappings are invariably correct,
an explicit invalidation is unnecessary.

A consequence of this specification is that an implementation may use any translation for
an address that was valid at any time since the most recent IOTINVAL that subsumes
that address. In particular, if a leaf PTE is modified but a subsuming IOTINVAL is not
executed, either the old translation or the new translation will be used, but the choice is
unpredictable. The behavior is otherwise well-defined.

In a conventional TLB design, it is possible for multiple entries to match a single address
if, for example, a page is upgraded to a larger page without first clearing the original non-
leaf PTE’s valid bit and executing an IOTINVAL.VMA or IOTINVAL.GVMA as
applicable with AV=0. In this case, a similar remark applies: it is unpredictable whether
the old non-leaf PTE or the new leaf PTE is used, but the behavior is otherwise well defined.

Another consequence of this specification is that it is generally unsafe to update a PTE
using a set of stores of a width less than the width of the PTE, as it is legal for the
implementation to read the PTE at any time, including when only some of the partial
stores have taken effect.

4.1.2. IOMMU Command-queue Fence commands

The IOMMU fetches commands from the CQ in order but the IOMMU may execute the fetched
commands out of order. The IOMMU advancing cqh is not a guarantee that the commands fetched by
the IOMMU have been executed or committed.
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A IOFENCE.C command completion, as determined by cqh advancing past the index of the
IOFENCE.C command in the CQ, guarantees that all previous commands fetched from the CQ have
been completed and committed.

If the IOFENCE.C times out waiting on completion of previous commands that are specified to have a
timeout, then the cmd_to bit in cqcsr Section 6.15 is set to signal this condition. The cqh holds the
index of the IOFENCE.C that timed out and all previous commands that are not specified to have a
timeout have been completed and committed.


In this version of the specification, only the ATS.INVAL command is specified to have a
timeout.

The commands may be used to order memory accesses from I/O devices connected to the IOMMU as
viewed by the IOMMU, other RISC-V harts, and external devices or co-processors.

The PR bit, when set to 1, can be used to request that the IOMMU ensure that all previous read
requests from devices that have already been processed by the IOMMU be committed to a global
ordering point such that they can be observed by all RISC-V harts and IOMMUs in the system.

The PW bit, when set to 1, can be used to request that the IOMMU ensure that all previous write
requests from devices that have already been processed by the IOMMU be committed to a global
ordering point such that they can be observed by all RISC-V harts and IOMMUs in the system.

The wire-signaled-interrupts (WSI) bit when set to 1 causes a wired-interrupt from the command
queue to be generated (by setting cqcsr.fence_w_ip - Section 6.15) on completion of IOFENCE.C.
This bit is reserved if the IOMMU does not support wired-interrupts or wired-interrupts have not been
enabled (i.e., fctl.WSI == 0).



Software should ensure that all previous read and writes processed by the IOMMU have
been committed to a global ordering point before reclaiming memory that was previously
made accessible to a device. A safe sequence for such memory reclamation is to first
update the page tables to disallow access to the memory from the device and then use the
IOTINVAL.VMA or IOTINVAL.GVMA appropriately to synchronize the IOMMU with
the update to the page table. As part of the synchronization if the memory reclaimed was
previously made read accessible to the device then request ordering of all previous reads;
else if the memory reclaimed was previously made write accessible to the device then
request ordering of all previous reads and writes. Ordering previous reads may be required
if the reclaimed memory will be used to hold data that must not be made visible to the
device.

The IOFENCE.C with PR and/or PW set to 1 only ensures that requests that have been
already processed by the IOMMU are committed to the global ordering point. Software
must perform an interconnect-specific fence action if there is a need to ensure that all in-
flight requests from a device that have not yet been processed by the IOMMU are observed.
For PCIe, for example, a completion from device in response to a read from the device
memory has the property of ensuring that previous posted writes are observed by the
IOMMU as completions may not pass previous posted writes.

The ordering guarantees are made for accesses to main-memory. For accesses to I/O
memory, the ordering guarantees are implementation and I/O protocol defined. Simpler
implementations may unconditionally order all previous memory accesses globally.
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The AV command operand indicates if ADDR[63:2] and DATA operands are valid. If AV=1, the
IOMMU writes DATA to memory at a 4-byte aligned address ADDR[63:2] * 4 as a 4-byte store
when the command completes. When AV is 0, the ADDR[63:2] and DATA operands are ignored. If
the attempt to perform this write encounters a memory fault, the cmd_mf bit in cqcsr Section 6.15 is
set to signal this condition, and the cqh holds the index of the IOFENCE.C that encountered such a
memory fault and did not complete.



Software may configure the ADDR[63:2] command operand to specify the address of
the seteipnum_le/seteipnum_be register in an IMSIC to cause an external
interrupt notification on IOFENCE.C completion. Alternatively, software may program
ADDR[63:2] to a memory location and use IOFENCE.C to set a flag in memory
indicating command completion.

4.1.3. IOMMU directory cache invalidation commands

IOMMU operations cause implicit reads to DDT and/or PDT. To reduce latency of such reads, the
IOMMU may cache entries from the DDT and/or PDT in IOMMU directory caches. These caches
might not observe modifications performed by software to these data structures in memory.

The IOMMU DDT cache invalidation command, IODIR.INVAL_DDT, synchronizes updates to DDT
with the operation of the IOMMU and flushes the matching cached entries.

The IOMMU PDT cache invalidation command, IODIR.INVAL_PDT, synchronizes updates to PDT
with the operation of the IOMMU and flushes the matching cached entries.

The DV operand indicates if the device ID (DID) operand is valid. The DV operand must be 1 for
IODIR.INVAL_PDT else the command is illegal. When DV operand is 1, the value of the DID operand
must not be wider than that supported by the ddtp.iommu_mode.

IODIR.INVAL_DDT guarantees that any previous stores made by a RISC-V hart to the DDT are
observed before all subsequent implicit reads from IOMMU to DDT. If DV is 0, then the command
invalidates all DDT and PDT entries cached for all devices; the DID operand is ignored. If DV is 1, then
the command invalidates cached leaf-level DDT entry for the device identified by DID operand and all
associated PDT entries. The PID operand is reserved for the IODIR.INVAL_DDT command.

IODIR.INVAL_PDT guarantees that any previous stores made by a RISC-V hart to the PDT are
observed before all subsequent implicit reads from IOMMU to PDT. The command invalidates cached
leaf PDT entry for the specified PID and DID. The PID operand of IODIR.INVAL_PDT must not be
wider than the width supported by the IOMMU (see Section 6.3).
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

Some fields in the Device-context or Process-context may be guest-physical addresses. An
implementation when caching the device-context or process-context may cache these
fields after translating them to a supervisor physical address. Other implementations may
cache them as guest-physical addresses and translate them to supervisor physical
addresses using a second-stage page table just prior to accessing memory referenced by
these addresses.

If second-stage page tables used for these translations are modified, software must issue
the appropriate IODIR command as some implementations may choose to cache the
translated supervisor physical address pointer in the IOMMU directory caches.

The IOTINVAL command has no effect on the IOMMU directory caches.

4.1.4. IOMMU PCIe ATS commands

This command is supported if capabilities.ATS is set to 1.

The ATS.INVAL command instructs the IOMMU to send an “Invalidation Request” message to the
PCIe device function identified by RID. An “Invalidation Request” message is used to clear a specific
subset of the address range from the address translation cache in a device function. The ATS.INVAL
command completes when an “Invalidation Completion” response message is received from the device
or a protocol-defined timeout occurs while waiting for a response. The IOMMU may advance the cqh
and fetch more commands from CQ while a response is awaited. If a timeout occurs, it is reported
when a subsequent IOFENCE.C command is executed.



Software that needs to know if the invalidation operation completed on the device may use
the IOMMU command-queue fence command (IOFENCE.C) to wait for the responses to
all prior “Invalidation Request” messages. The IOFENCE.C is guaranteed to not complete
before all previously fetched commands were executed and completed. A previously fetched
ATS command to invalidate device ATC does not complete until either the request times
out or a valid response is received from the device.

If one or more ATS invalidation commands preceding the IOFENCE.C have timed out,
then software may make the CQ operational again and resubmit the invalidation
commands that may have timed out. If the ATS.INVAL commands queued before the
IOFENCE.C were directed at multiple devices then software may resubmit these
commands as ATS.INVAL and IOFENCE.C pairs to identify the device that caused the
timeout.
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The ATS.PRGR command instructs the IOMMU to send a “Page Request Group Response” message to
the PCIe device function identified by the RID. The “Page Request Group Response” message is used
by system hardware and/or software to communicate with the device functions page-request interface
to signal completion of a “Page Request”, or the catastrophic failure of the interface.

If the PV operand is set to 1, the message is generated with a PASID with the PASID field set to the PID
operand. if PV operand is set to 0, then the PID operand is ignored and the message is generated
without a PASID.

The PAYLOAD operand of the command is used to form the message body and its fields are as
specified by the PCIe specification [2]. The PAYLOAD field is formatted as follows:

Figure 30. PAYLOAD of an ATS.INVAL command

Figure 31. PAYLOAD of an ATS.PRGR command

If the DSV operand is 1, then a valid destination segment number is specified by the DSEG operand. If
the DSV operand is 0, then the DSEG operand is ignored.



A Hierarchy is a PCI Express I/O interconnect topology, wherein the Configuration Space
addresses, referred to as the tuple of Bus/Device/Function Numbers, are unique. In some
contexts, a Hierarchy is also called a Segment, and in Flit Mode, the Segment number is
sometimes included in the ID of a Function.

4.2. Fault/Event-Queue (FQ)

Fault/Event queue is an in-memory queue data structure used to report events and faults raised when
processing transactions. Each fault record is 32 bytes.

The PPN of the base of this in-memory queue and the size of the queue is configured into a memory-
mapped register called fault-queue base (fqb).

The tail of the fault-queue resides in an IOMMU controlled read-only memory-mapped register called
fqt. The fqt is an index into the next fault record that IOMMU will write in the fault-queue.
Subsequent to writing the record, the IOMMU advances the fqt by 1. The head of the fault-queue
resides in a read/write memory-mapped software controlled register called fqh. The fqh is an index
into the fault record that SW should process next. Subsequent to processing fault record(s) software
advances the fqh by the count of the number of fault records processed. If fqh == fqt, the fault-
queue is empty. If fqt == (fqh - 1) the fault-queue is full.

The fault records are interpreted as four 64-bit doublewords. The byte order of each of the
doublewords in memory, little-endian or big-endian, is the endianness as determined by fctl.BE
(Section 6.4).
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Figure 32. Fault-queue record

The CAUSE is a code indicating the cause of the fault/event.

Table 11. Fault record CAUSE field encodings

CAUSE Description Reported if DTF is 1?

1 Instruction access fault No

4 Read address misaligned No

5 Read access fault No

6 Write/AMO address misaligned No

7 Write/AMO access fault No

12 Instruction page fault No

13 Read page fault No

15 Write/AMO page fault No

20 Instruction guest page fault No

21 Read guest-page fault No

23 Write/AMO guest-page fault No

256 All inbound transactions disallowed Yes

257 DDT entry load access fault Yes

258 DDT entry not valid Yes

259 DDT entry misconfigured Yes

260 Transaction type disallowed No

261 MSI PTE load access fault No

262 MSI PTE not valid No

263 MSI PTE misconfigured No

264 MRIF access fault No

265 PDT entry load access fault No

266 PDT entry not valid No

267 PDT entry misconfigured No

268 DDT data corruption Yes
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CAUSE Description Reported if DTF is 1?

269 PDT data corruption No

270 MSI PT data corruption No

271 MSI MRIF data corruption No

272 Internal data path error Yes

273 IOMMU MSI write access fault Yes

274 First/second-stage PT data corruption No

The CAUSE encodings 275 through 2047 are reserved for future standard use and the encodings 2048
through 4095 are designated for custom use. Encodings between 0 and 275 that are not specified in
Table 11 are reserved for future standard use.

If a fault condition prevents locating a valid device context then the DTF value assumed for reporting
such faults is 0.

The TTYP field reports inbound transaction type.

Table 12. Fault record TTYP field encodings

TTYP Description

0 None. Fault not caused by an inbound transaction.

1 Untranslated read for execute transaction

2 Untranslated read transaction

3 Untranslated write/AMO transaction

4 Reserved

5 Translated read for execute transaction

6 Translated read transaction

7 Translated write/AMO transaction

8 PCIe ATS Translation Request

9 PCIe Message Request

10 - 31 Reserved

31 - 63 Designated for custom use

If the TTYP is a transaction with an IOVA, the IOVA is reported in iotval. If the TTYP is a PCIe
message request, the message code of the PCIe message is reported in iotval. If TTYP is 0, the values
reported in iotval and iotval2 fields are as defined by the CAUSE.



The IOVA is partitioned into a virtual page number (VPN) and page offset. Whereas the
VPN is translated into a physical page number (PPN) by the address translation process,
the page offset is not required for this process. The IO bridge in some implementations
may not provide the page offset part of the IOVA to the IOMMU and the IOMMU may
report the page offset in iotval as 0. Likewise, an IOMMU may report the page offset of
a GPA in iotval2 as 0.
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DID holds the device_id of the transaction. If PV is 0, then PID and PRIV are 0. If PV is 1, the PID
holds a process_id of the transaction and if the privilege of the transaction was Supervisor then the
PRIV bit is 1 else it’s 0. The DID, PV, PID, and PRIV fields are 0 if TTYP is 0.

If the CAUSE is a guest-page fault then bits 63:2 of the zero-extended guest-physical-address are
reported in iotval2[63:2]. If bit 0 of iotval2 is 1, then the guest-page-fault was caused by an
implicit memory access for first-stage address translation. If bit 0 of iotval2 is 1, and the implicit
access was a write then bit 1 of iotval2 is set to 1 else it is set to 0.



The bit 1 of iotval2 is set for the case where the implementation supports hardware
updating of A/D bits and the implicit memory access was attempted to automatically
update A and/or D in first-stage page tables. All other implicit memory accesses for first-
stage address translation will be reads. If the hardware updating of A/D bits is not
implemented, the write case will never arise.

When the second-stage is not Bare, the memory accesses for reading PDT entries to locate
the Process-context are implicit memory accesses for first-stage address translation. If a
guest-page fault was caused by implicit memory access to read PDT entries, then bit 0 of
iotval2 is reported as 1 and bit 1 as 0.

The IOMMU may be unable to report faults through the fault-queue due to error conditions such as
the fault-queue being full or the IOMMU encountering access faults when attempting to access the
queue memory. A memory-mapped fault control and status register (fqcsr) holds information about
such faults. If the fault-queue full condition is detected, the IOMMU sets the fault-queue overflow
(fqof) bit in fqcsr. If the IOMMU encounters a fault in accessing the fault-queue memory, the
IOMMU sets the fault-queue memory access fault (fqmf) bit in fqcsr. While either error bit is set in
fqcsr, the IOMMU discards the record that led to the fault and all further fault records. When an
error bit in fqcsr is 1 or when a new fault record is produced in the fault-queue, the fault interrupt
pending (fip) bit is set in ipsr if interrupts from the fault-queue are enabled i.e. fqcsr.fie is 1.

The IOMMU may identify multiple requests as having detected an identical fault. In such cases the
IOMMU may report each of those faults individually, or report the fault for a subset, including one, of
requests.

4.3. Page-Request-Queue (PQ)

Page-request queue is an in-memory queue data structure used to report PCIe ATS “Page Request” and
"Stop Marker" messages [2] to software. The base PPN of this in-memory queue and the size of the
queue is configured into a memory-mapped register called page-request queue base (pqb). Each Page-
Request record is 16 bytes.

The tail of the queue resides in an IOMMU controlled read-only memory-mapped register called pqt.
The pqt holds an index into the queue where the next page-request message will be written by the
IOMMU. Subsequent to writing the message, the IOMMU advances the pqt by 1.

The head of the queue resides in a software controlled read/write memory-mapped register called
pqh. The pqh holds an index into the queue where the next page-request message will be received by
software. Subsequent to processing the message(s) software advances the pqh by the count of the
number of messages processed.
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If pqh == pqt, the page-request queue is empty.

If pqt == (pqh - 1) the page-request queue is full.

The IOMMU may be unable to report "Page Request" messages through the queue due to error
conditions such as the queue being disabled, queue being full, or the IOMMU encountering access
faults when attempting to access queue memory. A memory-mapped page-request queue control and
status register (pqcsr) is used to hold information about such faults. On a page queue full condition
the page-request-queue overflow (pqof) bit is set in pqcsr. If the IOMMU encountered a fault in
accessing the queue memory, the page-request-queue memory access fault (pqmf) bit is set in pqcsr.
While either error bit is set in pqcsr, the IOMMU discards all subsequent "Page Request" messages,
including the message that caused the error bits to be set. "Page request" messages that do not require a
response, i.e. those with the "Last Request in PRG" field is 0, are silently discarded. "Page request"
messages that require a response, i.e. those with "Last Request in PRG" field set to 1 and are not "Stop
Marker" messages, may be auto-completed by an IOMMU generated “Page Request Group Response”
message as specified in Section 3.7.

When an error bit in pqcsr is 1 or when a new message is produced in the queue, the page-request-
queue interrupt pending (pip) bit is set in the ipsr if interrupts from page-request-queue are
enabled i.e. pqcsr.pie is 1.

Figure 33. Page-request-queue record

The DID field holds the requester ID from the message. The PID field is valid if PV is 1 and reports the
PASID from message. PRIV is set to 0 if the message did not have a PASID, otherwise it holds the
“Privilege Mode Requested” bit from the TLP. The EXEC bit is set to 0 if the message did not have a
PASID, otherwise it reports the “Execute Requested” bit from the TLP. All other fields are set to 0. The
payload of the “Page Request” message (bytes 0x08 through 0x0F of the message) is held in the
PAYLOAD field. If R and W are both 0 and L is 1, the message is "Stop Marker".

The page-request-queue records are interpreted as two 64-bit doublewords. The byte order of each of
the doublewords in memory, little-endian or big-endian, is the endianness as determined by fctl.BE
(Section 6.4).

The PAYLOAD holds the message body and its fields are as specified by the PCIe specification [2]. The
PAYLOAD field is formatted as follows:

Figure 34. PAYLOAD of a "Page request" message
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Chapter 5. Debug support

To support software debug, the IOMMU may provide an optional register interface that may be used
by software to request IOMMU to perform an address translation. The IOMMU supports this
capability when capabilities.DBG is 1. The interface consists of two set of registers; translation-
request registers that are used by software to program an IOVA and other inputs needed by the process
to translate an IOVA (Section 3.3) as an Untranslated Request. The result of the translation, if the
process completes successfully, is reported through the translation-response registers. If the process
stops due to faults then the faults are reported normally in the fault-queue and the translation-
response registers updated with a failure indicator. If the IOVA is determined to be that of a virtual
interrupt file (Section 3.1.3.6) and the corresponding MSI PTE is in MRIF mode, then the process stops
and reports a "Transaction type disallowed" (cause = 260) fault.

When the process to translate an IOVA is invoked for this purpose, the IOMMU may or may not cache
first-stage PTEs, second-stage PTEs, DDT entries, PDT entries, or MSI PTEs accessed for the
translation process in the IOATC. The IOMMU is allowed to use any PTEs or directory structure
entries that may already be cached in the IOATC. The IOMMU may update the Accessed (A) and/or
Dirty (D) bits in the PTEs used for the translation process if supported by the IOMMU. When the
IOMMU implements a HPM, the HPM counters may be updated normally by the IOMMU. For the
purpose of counting in the HPM, these requests are treated as Untranslated Requests.

The translation-request interface consists of the following 64-bit WARL registers:

⚫ tr_req_iova (Section 6.24)

⚫ tr_req_ctl (Section 6.25)

The translation-response interface consists of a single 64-bit RO register tr_response (Section
6.26)

To request a translation, the tr_req_iova register is written first with the desired IOVA and the
tr_req_ctl register is written next. The 'Go/Busy` bit is set in tr_req_ctl to indicate a valid
request in the registers. The Go/Busy bit is a read-write-sticky (RWS) bit that once set cannot be
cleared by writing the register. The Go/Busy bit will be cleared to 0 by the IOMMU when the process
completes (successfully or due to encountering a fault). When the Go/Busy bit goes from 1 to 0, a
response is valid in the tr_response register.

When the Go/Busy bit is 1, the IOMMU behavior is UNSPECIFIED if:

⚫ The tr_req_iova or tr_req_ctl are modified.

⚫ IOMMU configurations, such as ddtp.iommu_mode, are modified.

The time to complete a translation request through this debug interface is UNSPECIFIED but is
required to be finite. If the IOMMU is serving translation requests from the IO bridge when a request
is made through this register interface then the time to complete the request may be longer than when
the IOMMU is otherwise idle.


The debug interface is optional but recommended to be implemented to aid software debug
and to implement architectural compliance tests.
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Chapter 6. Memory-mapped register interface

The IOMMU provides a memory-mapped programming interface. The memory-mapped registers of
each IOMMU are located within a naturally aligned 4-KiB region (a page) of physical address space.

The IOMMU behavior for register accesses where the address is not aligned to the size of the access, or
if the access spans multiple registers, or if the size of the access is not 4 bytes or 8 bytes, is
UNSPECIFIED. A 4 byte access to an IOMMU register must be single-copy atomic. Whether an 8 byte
access to an IOMMU register is single-copy atomic is UNSPECIFIED, and such an access may appear,
internally to the IOMMU, as if two separate 4 byte accesses — first to the high half and second to the
low half — were performed.



The 8-byte IOMMU registers are defined in such a way that software can perform two
individual 4-byte accesses, or hardware can perform two independent 4-byte transactions
resulting from an 8-byte access, to the high and low halves of the register, in that order, as
long as the register semantics, with regard to side-effects, are respected between the two
software accesses, or two hardware transactions, respectively.

The IOMMU registers have little-endian byte order, even for systems where all harts are big-endian-
only.


Big-endian-configured harts that make use of an IOMMU are expected to implement the
REV8 byte-reversal instruction defined by the Zbb extension. If REV8 is not implemented,
then endianness conversion may be implemented using a sequence of instructions.

If a register is optional, as determined by the corresponding capabilities register bit being 0, then
a read from the memory-mapped register offset of the register returns 0 and writes to that offset are
ignored.

6.1. Register layout

Table 13. IOMMU Memory-mapped register layout

Offset Name Size Description Is Optional?

0 capabilities 8 Capabilities of the IOMMU No

8 fctl 4 Features control No

12 custom 4 Designated For custom use

16 ddtp 8 Device directory table pointer No

24 cqb 8 Command-queue base No

32 cqh 4 Command-queue head No

36 cqt 4 Command-queue tail No

40 fqb 8 Fault-queue base No

48 fqh 4 Fault-queue head No

52 fqt 4 Fault-queue tail No

56 pqb 8 Page-request-queue base if capabilities.ATS==0

64 pqh 4 Page-request-queue head if capabilities.ATS==0
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Offset Name Size Description Is Optional?

68 pqt 4 Page-request-queue tail if capabilities.ATS==0

72 cqcsr 4 Command-queue CSR No

76 fqcsr 4 Fault-queue CSR No

80 pqcsr 4 Page-request-queue CSR if capabilities.ATS==0

84 ipsr 4 Interrupt pending status register No

88 iocountovf 4 HPM counter overflows if capabilities.HPM==0

92 iocountinh 4 HPM counter inhibits if capabilities.HPM==0

96 iohpmcycles 8 HPM cycles counter if capabilities.HPM==0

104 iohpmctr1-31 248 HPM event counters if capabilities.HPM==0

352 iohpmevt1-31 248 HPM event selector if capabilities.HPM==0

600 tr_req_iova 8 Translation-request IOVA if capabilities.DBG==0

608 tr_req_ctl 8 Translation-request control if capabilities.DBG==0

616 tr_response 8 Translation-request response if capabilities.DBG==0

624 iommu_qosid 4 IOMMU QoS ID if capabilities.QOSID==0

628 Reserved 60 Reserved for future use (WPRI)

688 custom 72 Designated for custom use (WARL)

760 icvec 8 Interrupt cause to vector register No

768 msi_cfg_tbl 256 MSI Configuration Table if capabilities.IGS==WSI

1024 Reserved 3072 Reserved for standard use

6.2. Reset behavior

The reset value is 0 for the following registers fields.

⚫ cqcsr - cqen, cqie, cqon, and busy
⚫ fqcsr - fqen, fqie, fqon, and busy
⚫ pqcsr - pqen, pqie, pqon, and busy
⚫ tr_req_ctl.Go/Busy
⚫ ddtp.busy

The reset value is 0 for the following registers.

⚫ ipsr

Reset value for ddtp.iommu_mode field must be either Off or Bare.

After a reset the caches (Section 3.8) must have no valid entries.

 The reset value for the iommu_mode is recommended to be Off.
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The reset value is UNSPECIFIED for all other registers and/or fields.

6.3. IOMMU capabilities (capabilities)

The capabilities register is a read-only register reporting features supported by the IOMMU.
Each field if not clear indicates the presence of that feature in the IOMMU. At reset, the register shall
contain the IOMMU supported features.

Figure 35. IOMMU capabilities register fields

Bits Field Attribut
e

Description

7:0 version RO The version field holds the version of the specification implemented by the
IOMMU. The low nibble is used to hold the minor version of the specification and
the upper nibble is used to hold the major version of the specification. For example,
an implementation that supports version 1.0 of the specification reports 0x10.

8 Sv32 RO Page-based 32-bit virtual addressing is supported.

9 Sv39 RO Page-based 39-bit virtual addressing is supported.

10 Sv48 RO Page-based 48-bit virtual addressing is supported.
When Sv48 is set, Sv39 must be set.

11 Sv57 RO Page-based 57-bit virtual addressing is supported
When Sv57 is set, Sv48 must be set.

14:12 reserved RO Reserved for standard use.

15 Svpbmt RO Page-based memory types.

16 Sv32x4 RO Page-based 34-bit virtual addressing for second-stage address translation is
supported.

17 Sv39x4 RO Page-based 41-bit virtual addressing for second-stage address translation is
supported.

18 Sv48x4 RO Page-based 50-bit virtual addressing for second-stage address translation is
supported.

19 Sv57x4 RO Page-based 59-bit virtual addressing for second-stage address translation is
supported.
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Bits Field Attribut
e

Description

20 reserved RO Reserved for standard use.

21 AMO_MRI
F

RO Atomic updates to MRIF is supported.

22 MSI_FLA
T

RO MSI address translation using Pass-through mode MSI PTE is supported.

23 MSI_MRI
F

RO MSI address translation using MRIF mode MSI PTE is supported.

24 AMO_HWA
D

RO Atomic updates to PTE accessed (A) and dirty (D) bit is supported.

25 ATS RO PCIe Address Translation Services (ATS) and page-request interface (PRI) [2] is
supported.

26 T2GPA RO Returning guest-physical-address in ATS translation completions is supported.

27 END RO When 0, IOMMU supports one endianness (either little or big). When 1, IOMMU
supports both endianness. The endianness is defined in the fctl register.

29:2
8

IGS RO IOMMU interrupt generation support.

Value Name Description

0 MSI IOMMU supports only message- signaled-
interrupt generation.

1 WSI IOMMU supports only wire- signaled-interrupt
generation.

2 BOTH IOMMU supports both MSI and WSI generation.
The interrupt generation method must be
defined in the fctl register.

3 0 Reserved for standard use

30 HPM RO IOMMU implements a hardware performance monitor.

31 DBG RO IOMMU supports the translation-request interface

37:32 PAS RO Physical Address Size supported by the IOMMU.

38 PD8 RO One level PDT with 8-bit process_id supported.

39 PD17 RO Two level PDT with 17-bit process_id supported.

40 PD20 RO Three level PDT with 20-bit process_id supported.

41 QOSID RO Associating QoS IDs with requests is supported.

55:42 reserved RO Reserved for standard use.

63:5
6

custom RO Designated for custom use.

When HPM is 1, the iohpmcycles and the iohpmctr1 registers must be present and be at least 32-
bits wide.
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At least one method, MSI or WSI, of generating interrupts from the IOMMU must be supported.

IOMMU implementations must support the Svnapot standard extension for NAPOT Translation
Contiguity.

The physical address space addressable by the IOMMU ranges from 0 to .



Hypervisor may provide an SW emulated IOMMU to allow the guest to manage the first-
stage page tables for fine grained control on memory accessed by guest controlled devices.

A hypervisor that provides such an emulated IOMMU to the guest may retain control of
the second-stage address translation and clear the SvNx4 fields of the emulated
capabilities register.

A hypervisor that provides such an emulated IOMMU to the guest may retain control of
the MSI page tables used to direct MSIs to guest interrupt files in an IMSIC or to a
memory-resident-interrupt-file and clear the MSI_FLAT and MSI_MRIF fields of the
emulated capabilities register.


The AMO_HWAD/AMO_MRIF bits do not indicate support for device-initiated atomic
memory operations. Support for device-initiated atomic memory operations must be
discovered through other means.



The IOMMU is designed to provide a highly modular and extensible set of capabilities
allowing implementations to include only the exact set of capabilities required for an
application. In addition, implementations may add their own custom extensions to the
IOMMU.

The IOMMU must support all the virtual memory extensions that are supported by any of
the harts in the system.

RISC-V platform specifications may mandate a set of IOMMU capabilities that must be
provided by an implementation to be compliant to those specifications.

6.4. Features-control register (fctl)

This register must be readable in any implementation. An implementation may allow one or more
fields in the register to be writable to support enabling or disabling the feature controlled by that field.

If software enables or disables a feature when the IOMMU is not OFF (i.e. when ddtp.iommu_mode
!= Off) then the IOMMU behavior is UNSPECIFIED.

If software enables or disables a feature when the IOMMU in-memory queues are enabled (i.e.
cqcsr.cqon/cqen == 1, fqcsr.fqon/cqen == 1, or pqcsr.pqon/pqen == 1) then the
IOMMU behavior is UNSPECIFIED.

Figure 36. Feature-control register fields
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Bits Field Attribute Description

0 BE WARL When 0, IOMMU accesses to memory resident data
structures, as specified in Table 7, and accesses to in-memory
queues are performed as little-endian accesses and when 1 as
big-endian accesses.

1 WSI WARL When 1, IOMMU interrupts are signaled as wire-signaled-
interrupts else they are signaled as message-signaled-
interrupts.

2 GXL WARL Controls the address-translation schemes that may be used
for guest physical addresses as defined in Table 2.

15:3 reserved WPRI Reserved for standard use.

31:16 custom WPRI Designated for custom use.

6.5. Device-directory-table pointer (ddtp)

Figure 37. Device-directory-table pointer register fields

Bits Field Attribute Description

3:0 iommu_mode WARL The IOMMU may be configured to be in the following modes:

Value Name Description

0 Off No inbound memory transactions
are allowed by the IOMMU.

1 Bare No translation or protection. All
inbound memory accesses are
passed through.

2 1LVL One-level device-directory-table

3 2LVL Two-level device-directory-table

4 3LVL Three-level device-directory-table

5-13 reserved Reserved for standard use.

14-15 custom Designated for custom use.
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Bits Field Attribute Description

4 busy RO A write to ddtp.iommu_mode may require the IOMMU to
perform many operations that may not occur synchronously
to the write. When a write is observed by the
ddtp.iommu_mode, the busy bit is set to 1. When the busy
bit is 1, behavior of additional writes to the ddtp is
UNSPECIFIED. Some implementations may ignore the
second write and others may perform the actions determined
by the second write. Software must verify that the busy bit is
0 before writing to the ddtp.

If the busy bit reads 0 then the IOMMU has completed the
operations associated with the previous write to
ddtp.iommu_mode.

An IOMMU that can complete these operations
synchronously may hard-wire this bit to 0.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the device-directory-table.

63:54 reserved WPRI Reserved for standard use

The device-context is 64-bytes in size if capabilities.MSI_FLAT is 1 else it is 32-bytes.

When the iommu_mode is Bare or Off, the PPN field is don’t-care. When in Bare mode only
Untranslated requests are allowed. Translated requests, Translation request, and PCIe message
transactions are unsupported.

All IOMMUs must support Off and Bare mode. An IOMMU is allowed to support a subset of
directory-table levels and device-context widths. At a minimum one of the modes must be supported.

When the iommu_mode field value is changed to Off the IOMMU guarantees that in-flight
transactions, observed at the time of the write to this field, from devices connected to the IOMMU will
either be processed with the configurations applicable to the old value of the iommu_mode field or be
aborted (Section 8.3). It also ensures that all transactions and previous requests from devices that have
already been processed by the IOMMU are committed to a global ordering point such that they can be
observed by all RISC-V harts, devices, and IOMMUs in the platform. Software must not change the
PPN field value when transitioning the iommu_mode to Off.

The IOMMU behavior of writing iommu_mode to 1LVL, 2LVL, or 3LVL, when the previous value of
the iommu_mode is not Off or Bare is UNSPECIFIED. To change DDT levels, the IOMMU must first
be transitioned to Bare or Off state. The behavior resulting from changing the iommu_mode to
Bare when the previous value of the iommu_mode was not Off is UNSPECIFIED.

When an IOMMU is transitioned to Bare or Off state, the IOMMU may retain information cached
from in-memory data structures such as page tables, DDT, PDT, etc. Software must use suitable
invalidation commands to invalidate cached entries.


In RV32, only the low order 32-bits of the register (22-bit PPN and 4-bit iommu_mode)
need to be written.
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6.6. Command-queue base (cqb)

This 64-bit register (RW) holds the PPN of the root page of the command-queue and number of
entries in the queue. Each command is 16 bytes.

The IOMMU behavior on writing cqb when cqcsr.busy or cqon bits are 1 is UNSPECIFIED. The
software recommended sequence to change cqb is to first disable the command-queue by clearing
cqen and wait for both cqcsr.busy and cqon to be 0 before changing the cqb. The status of bits
31:cqb.LOG2SZ in cqt following a write to cqb is 0 and the bits cqb.LOG2SZ-1:0 in cqt
assume a valid but otherwise UNSPECIFIED value.

Figure 38. Command-queue base register fields

Bits Field Attribute Description

4:0 LOG2SZ-1 WARL The LOG2SZ-1 field holds the number of entries in command-queue as a
log to base 2 minus 1. A value of 0 indicates a queue of 2 entries. Each
IOMMU command is 16-bytes. If the command-queue has 256 or fewer
entries then the base address of the queue is always aligned to 4-KiB. If the
command-queue has more than 256 entries then the command-queue
base address must be naturally aligned to 2LOG2SZ x 16.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory command-queue used by
software to queue commands to the IOMMU. If the base address as
determined by PPN is not aligned as required, all entries in the queue
appear to an IOMMU as UNSPECIFIED and any address an IOMMU may
compute and use for accessing an entry in the queue is also
UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use


In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit LOG2SZ-1) need
to be written.

6.7. Command-queue head (cqh)

This 32-bit register (RO) holds the index into the command-queue where the IOMMU will fetch the
next command.

Figure 39. Command-queue head register fields

Bits Field Attribute Description

31:0 index RO Holds the index into the command-queue from where the next
command will be fetched by the IOMMU.
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6.8. Command-queue tail (cqt)

This 32-bit register (RW) holds the index into the command-queue where the software queues the
next command for the IOMMU.

Figure 40. Command-queue tail register fields

Bits Field Attribute Description

31:0 index WARL Holds the index into the command-queue where software queues the
next command for IOMMU. Only LOG2SZ-1:0 bits are writable.

6.9. Fault queue base (fqb)

This 64-bit register (RW) holds the PPN of the root page of the fault-queue and number of entries in
the queue. Each fault record is 32 bytes.

The IOMMU behavior on writing fqb when fqcsr.busy or fqon bits are 1 is UNSPECIFIED. The
software recommended sequence to change fqb is to first disable the fault-queue by clearing fqen
and wait for both fqcsr.busy and fqon to be 0 before changing the fqb. The status of bits
31:fqb.LOG2SZ in fqh following a write to fqb is 0 and the bits fqb.LOG2SZ-1:0 in fqh
assume a valid but otherwise UNSPECIFIED value.

Figure 41. Fault queue base register fields

Bits Field Attribute Description

4:0 LOG2SZ-1 WARL The LOG2SZ-1 field holds the number of entries in the fault-queue as a
log-to-base-2 minus 1. A value of 0 indicates a queue of 2 entries. Each
fault record is 32-bytes. If the fault-queue has 128 or fewer entries then
the base address of the queue is always aligned to 4-KiB. If the fault-queue
has more than 128 entries then the fault-queue base address must be
naturally aligned to 2LOG2SZ x 32.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory fault-queue used by
IOMMU to queue fault record. If the base address as determined by PPN is
not aligned as required, all entries in the queue appear to an IOMMU as
UNSPECIFIED and any address an IOMMU may compute and use for
accessing an entry in the queue is also UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use


In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit LOG2SZ-1) need
to be written.
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6.10. Fault queue head (fqh)

This 32-bit register (RW) holds the index into the fault-queue where the software will fetch the next
fault record.

Figure 42. Fault queue head register fields

Bits Field Attribute Description

31:0 index WARL Holds the index into the fault-queue from which software reads the next
fault record. Only LOG2SZ-1:0 bits are writable.

6.11. Fault queue tail (fqt)

This 32-bit register (RO) holds the index into the fault-queue where the IOMMU queues the next fault
record.

Figure 43. Fault queue tail register fields

Bits Field Attribute Description

31:0 index RO Holds the index into the fault-queue where IOMMU writes the next fault
record.

6.12. Page-request-queue base (pqb)

This 64-bit register (WARL) holds the PPN of the root page of the page-request-queue and number of
entries in the queue. Each "Page Request" message is 16 bytes.

The IOMMU behavior on writing pqb when pqcsr.busy or pqon bits are 1 is UNSPECIFIED. The
software recommended sequence to change pqb is to first disable the page-request-queue by clearing
pqen and wait for both pqcsr.busy and pqon to be 0 before changing the pqb. The status of bits
31:pqb.LOG2SZ in pqh following a write to pqb is 0 and the bits pqb.LOG2SZ-1:0 in pqh
assume a valid but otherwise UNSPECIFIED value.

Figure 44. Page-Request-queue base register fields
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Bits Field Attribute Description

4:0 LOG2SZ-1 WARL The LOG2SZ-1 field holds the number of entries in the page-request-
queue as a log-to-base-2 minus 1. A value of 0 indicates a queue of 2
entries. Each page-request is 16-bytes. If the page-request-queue has 256
or fewer entries then the base address of the queue is always aligned to 4-
KiB. If the page-request-queue has more than 256 entries then the page-
request-queue base address must be naturally aligned to 2LOG2SZ x 16.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory page-request-queue used
by IOMMU to queue "Page Request" messages. If the base address as
determined by PPN is not aligned as required, all entries in the queue
appear to an IOMMU as UNSPECIFIED and any address an IOMMU may
compute and use for accessing an entry in the queue is also
UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use


In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit LOG2SZ-1) need
to be written.

6.13. Page-request-queue head (pqh)

This 32-bit register (RW) holds the index into the page-request-queue where software will fetch the
next page-request.

Figure 45. Page-request-queue head register fields

Bits Field Attribute Description

31:0 index WARL Holds the index into the page-request-queue from which software reads
the next "Page Request" message. Only LOG2SZ-1:0 bits are writable.

6.14. Page-request-queue tail (pqt)

This 32-bit register (RO) holds the index into the page-request-queue where the IOMMU writes the
next page-request.

Figure 46. Page-request-queue tail register fields

Bits Field Attribute Description

31:0 index RO Holds the index into the page-request-queue where IOMMU writes the
next "Page Request" message.
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6.15. Command-queue CSR (cqcsr)

This 32-bit register (RW) is used to control the operations and report the status of the command-
queue.

Figure 47. Command-queue CSR register fields

Bits Field Attribute Description

0 cqen RW The command-queue-enable bit enables the command- queue when set to
1.

Changing cqen from 0 to 1 sets the cqh register and the cqcsr bits
cmd_ill,cmd_to, cqmf, fence_w_ip to 0. The command-queue may
take some time to be active following setting the cqen to 1. During this
delay the busy bit is 1. When the command queue is active, the cqon bit
reads 1. 

When cqen is changed from 1 to 0, the command queue may stay active
(with busy asserted) until the commands already fetched from the
command-queue are being processed and/or there are outstanding
implicit loads from the command-queue. When the command-queue
turns off the cqon bit reads 0. 
When the cqon bit reads 0, the IOMMU guarantees that no implicit
memory accesses to the command queue are in-flight and the command-
queue will not generate new implicit loads to the queue memory.

1 cie RW Command-queue-interrupt-enable bit enables generation of interrupts
from command-queue when set to 1.

7:2 reserved WPRI Reserved for standard use

8 cqmf RW1C If command-queue access to fetch a command or a memory access made
by a command leads to a memory fault, then the command-queue-
memory-fault bit is set to 1, and the command-queue stalls until this bit is
cleared. To re-enable command processing, software should clear this bit
by writing 1.

9 cmd_to RW1C If the execution of a command leads to a timeout (e.g. a command to
invalidate device ATC may timeout waiting for a completion), then the
command-queue sets the cmd_to bit and stops processing from the
command-queue. To re-enable command processing, software should
clear this bit by writing 1.

10 cmd_ill RW1C If an illegal or unsupported command is fetched and decoded by the
command-queue then the command-queue sets the cmd_ill bit and
stops processing from the command-queue. To re-enable command
processing software should clear this bit by writing 1.
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Bits Field Attribute Description

11 fence_w_
ip

RW1C An IOMMU that supports wire-signaled-interrupts sets the fence_w_ip
bit to indicate completion of an IOFENCE.C command. To re-enable
interrupts on IOFENCE.C completion, software should clear this bit by
writing 1. This bit is reserved if the IOMMU does not support wire-
signaled-interrupts or wire-signaled-interrupts are not enabled (i.e.,
fctl.WSI == 0).

15:12 reserved WPRI Reserved for standard use

16 cqon RO The command-queue is active if cqon is 1.

17 busy RO A write to cqcsr may require the IOMMU to perform many operations
that may not occur synchronously to the write. When a write is observed
by the cqcsr, the busy bit is set to 1.

When the busy bit is 1, behavior of additional writes to the cqcsr is
UNSPECIFIED. Some implementations may ignore the second write and
others may perform the actions determined by the second write.

Software must verify that the busy bit is 0 before writing to the cqcsr.

An IOMMU that can complete these operations synchronously may hard-
wire this bit to 0.

27:18 reserved WPRI Reserved for standard use.

31:28 custom WPRI Designated for custom use.

When cmd_ill or cqmf is 1 in cqcsr, the cqh references the command in the CQ that caused the
error. Previous commands may have completed, timed out, or their execution aborted by the IOMMU.


If software makes the CQ operational again after a cmd_ill or cqmf error, then
software should resubmit the commands submitted since the last IOFENCE.C that
successfully completed.

The cmd_to bit is set when a IOFENCE.C command detects that one or more previous commands
that are specified to have timeouts have timed out but all other commands previous to the
IOFENCE.C have completed. When cmd_to is 1, cqh references the IOFENCE.C command that
detected the timeout.



Command-queue being empty does not imply that all commands fetched from the
command-queue have been completed. When the command-queue is requested to be
disabled, an implementation may either complete the already fetched commands or abort
execution of those commands. Software must use an IOFENCE.C command to wait for
all previous commands to be committed, if so desired, before turning off the command-
queue.
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6.16. Fault queue CSR (fqcsr)

This 32-bit register (RW) is used to control the operations and report the status of the fault-queue.

Figure 48. Fault queue CSR register fields

Bits Field Attribute Description

0 fqen RW The fault-queue enable bit enables the fault-queue when set to 1.

Changing fqen from 0 to 1 sets the fqt register and the fqcsr bits fqof
and fqmf to 0. The fault-queue may take some time to be active following
setting the fqen to 1. During this delay the busy bit is 1. When the fault
queue is active, the fqon bit reads 1.

When fqen is changed from 1 to 0, the fault-queue may stay active (with
busy asserted) until in-flight fault-recording is completed. When the
fault-queue is off the fqon bit reads 0. 
When fqon reads 0, the IOMMU guarantees that there are no in-flight
implicit writes to the fault-queue in progress and that no new fault records
will be written to the fault-queue.

1 fie RW Fault queue interrupt enable bit enables generation of interrupts from
fault-queue when set to 1.

7:2 reserved WPRI Reserved for standard use

8 fqmf RW1C The fqmf bit is set to 1 if the IOMMU encounters an access fault when
storing a fault record to the fault queue. The fault-record that was
attempted to be written is discarded and no more fault records are
generated until software clears the fqmf bit by writing 1 to the bit.

9 fqof RW1C The fault-queue-overflow bit is set to 1 if the IOMMU needs to queue a
fault record but the fault-queue is full (i.e., fqt == fqh - 1).

The fault-record is discarded and no more fault records are generated
until software clears fqof by writing 1 to the bit.

15:10 reserved WPRI Reserved for standard use

16 fqon RO The fault-queue is active if fqon reads 1.

6.16. Fault queue CSR (fqcsr) | Page 71

RISC-V IOMMU Architecture Specification | © RISC-V International



Bits Field Attribute Description

17 busy RO Write to fqcsr may require the IOMMU to perform many operations that
may not occur synchronously to the write. When a write is observed by the
fqcsr, the busy bit is set to 1. When the busy bit is 1, behavior of
additional writes to the fqcsr are UNSPECIFIED. Some
implementations may ignore the second write and others may perform the
actions determined by the second write.

Software should ensure that the busy bit is 0 before writing to the fqcsr.

An IOMMU that can complete controls synchronously may hard-wire this
bit to 0.

27:18 reserved WPRI Reserved for standard use.

31:28 custom WPRI Designated for custom use.

6.17. Page-request-queue CSR (pqcsr)

This 32-bit register (RW) is used to control the operations and report the status of the page-request-
queue.

Figure 49. Page-request-queue CSR register fields

Bits Field Attribute Description

0 pqen RW The page-request-enable bit enables the page-request-queue when set to 1.

Changing pqen from 0 to 1, sets the pqt register and the pqcsr bits
pqmf and pqof to 0. The page-request-queue may take some time to be
active following setting the pqen to 1. During this delay the busy bit is 1.
When the page-request-queue is active, the pqon bit reads 1.

When pqen is changed from 1 to 0, the page-request-queue may stay
active (with busy asserted) until in-flight page-request writes are
completed. When the page-request-queue turns off, the pqon bit reads 0.

When pqon reads 0, the IOMMU guarantees that there are no older in-
flight implicit writes to the queue memory and no further implicit writes
will be generated to the queue memory.

The IOMMU may respond to “Page Request” messages received when
page-request-queue is off or in the process of being turned off, as specified
in Section 3.7.

1 pie RW The page-request-queue-interrupt-enable bit when set to 1, enables
generation of interrupts from page-request-queue.
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Bits Field Attribute Description

7:2 reserved WPRI Reserved for standard use

8 pqmf RW1C The pqmf bit is set to 1 if the IOMMU encounters an access fault when
storing a "Page Request" message to the page-request-queue.

The "Page Request" message that caused the pqmf or pqof error and all
subsequent "Page Request" messages are discarded until software clears the
pqof and/or pqmf bits by writing 1 to it.

The IOMMU may respond to “Page Request” messages that caused the
pqof or pqmf bit to be set and all subsequent “Page Request” messages
received while these bits are 1 as specified in Section 3.7.

9 pqof RW1C The page-request-queue-overflow bit is set to 1 if the page-request queue
overflows i.e. IOMMU needs to queue a "Page Request" message but the
page-request queue is full (i.e., pqt == pqh - 1).

The "Page Request" message that caused the pqmf or pqof error and all
subsequent "Page Request" messages are discarded until software clears the
pqof and/or pqmf bits by writing 1 to it.

The IOMMU may respond to “Page Request” messages that caused the
pqof or pqmf bit to be set and all subsequent “Page Request” messages
received while these bits are 1 as specified in Section 3.7.

15:10 reserved WPRI Reserved for standard use

16 pqon RO The page-request is active when pqon reads 1.

17 busy RO A write to pqcsr may require the IOMMU to perform many operations
that may not occur synchronously to the write. When a write is observed
by the pqcsr, the busy bit is set to 1.

When the busy bit is 1, behavior of additional writes to the pqcsr are
UNSPECIFIED. Some implementations may ignore the second write and
others may perform the actions determined by the second write. Software
should ensure that the busy bit is 0 before writing to the pqcsr.

An IOMMU that can complete controls synchronously may hard-wire this
bit to 0

27:18 reserved WPRI Reserved for standard use

31:28 custom WPRI Designated for custom use.

6.18. Interrupt pending status register (ipsr)

This 32-bit register (RW1C) reports the pending interrupts which require software service. Each
interrupt-pending bit in the register corresponds to a interrupt source in the IOMMU. The interrupt-
pending bit in the register once set to 1 stays 1 till software clears that interrupt-pending bit by writing
1 to clear it.

When fctl.WSI is 1, the interrupt-pending bit drives the wire selected by the corresponding icvec
field to signal an interrupt.
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When fctl.WSI is 0, the IOMMU signals interrupts using messages. MSI have edge semantics and
an interrupt message is generated when an interrupt-pending bit transitions from 0 to 1. The address
and data for the message are obtained from the msi_cfg_tbl entry selected by the icvec field
corresponding to the interrupt-pending bit.

Figure 50. Interrupt pending status register fields

Table 14. Interrupt pending status register fields

Bits Field Attribute Description

0 cip RW1C The command-queue-interrupt-pending bit is set to 1 if cqcsr.cie is 1
and any of the following are true:

⚫ cqcsr.fence_w_ip is 1.

⚫ cqcsr.cmd_ill is 1.

⚫ cqcsr.cmd_to is 1.

⚫ cqcsr.cqmf is 1.

1 fip RW1C The fault-queue-interrupt-pending bit is set to 1 if fqcsr.fie is 1 and
any of the following are true:

⚫ fqcsr.fqof is 1.

⚫ fqcsr.fqmf is 1.

⚫ A new record is produced in the FQ.

2 pmip RW1C The performance-monitoring-interrupt-pending is set to 1 when OF bit in
iohpmcycles or in any of the iohpmctr1-31 registers transitions
from 0 to 1.

3 pip RW1C The page-request-queue-interrupt-pending is set to 1 if pqcsr.pie is 1
and any of the following are true:

⚫ pqcsr.pqof is 1.

⚫ pqcsr.pqmf is 1.

⚫ A new message is produced in the PQ.

7:4 reserved WPRI Reserved for standard use.

15:8 custom WPRI Designated for custom use.

31:16 reserved WPRI Reserved for standard use

If a bit in ipsr is 1 then a write of 1 to the bit transitions the bit from 1→0. If the conditions to set that
bit are still present (See Table 14) or if they occur after the bit is cleared then that bit transitions again
from 0→1.
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6.19. Performance-monitoring counter overflow status (iocountovf)

The performance-monitoring counter overflow status is a 32-bit read-only register that contains
shadow copies of the OF bits in the iohpmevt1-31 registers - where iocountovf bit X corresponds
to iohpmevtX and bit 0 corresponds to the OF bit of iohpmcycles.

This register enables overflow interrupt handler software to quickly and easily determine which
counter(s) have overflowed.

Figure 51. Performance-monitoring counter overflow status register fields

Bits Field Attribute Description

0 CY RO Shadow of iohpmcycles.OF

31:1 HPM RO Shadow of iohpmevt[1-31].OF

6.20. Performance-monitoring counter inhibits (iocountinh)

The performance-monitoring counter inhibits is a 32-bit WARL register that contains bits to inhibit
the corresponding counters from counting. Bit X when set inhibits counting in iohpmctrX and bit 0
inhibits counting in iohpmcycles.

Figure 52. Performance-monitoring counter inhibits register fields

Bits Field Attribute Description

0 CY RW When set, iohpmcycles counter is inhibited from counting.

31:1 HPM WARL When bit X is set, then counting of events in iohpmctrX is inhibited.



When the iohpmcycles counter is not needed, it is desirable to conditionally inhibit it
to reduce energy consumption. Providing a single register to inhibit all counters allows a)
one or more counters to be atomically programmed with events to count b) one or more
counters to be sampled atomically.

To initialize an event counter or the cycles counter to a desired value, it should be first
inhibited if it is enabled to count. This measure ensures that it does not count during the
update process. The inhibition should be removed after the register has been programmed
with the desired value.
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6.21. Performance-monitoring cycles counter (iohpmcycles)

This 64-bit register is a free running clock cycle counter. There is no associated iohpmevt0.

Figure 53. Performance-monitoring cycles counter register fields

Bits Field Attribute Description

62:0 counter WARL Cycles counter value.

63 OF RW Overflow

The OF bit is set when the iohpmcycles counter overflows, and remains set until cleared by
software. Since iohpmcycles value is an unsigned value, overflow is defined as unsigned overflow.
Note that there is no loss of information after an overflow since the counter wraps around and keeps
counting while the sticky OF bit remains set.

If the iohpmcycles counter overflows when the OF bit is zero, then a HPM Counter Overflow
interrupt is generated by setting ipsr.pmip bit to 1. If the OF bit is already one, then no interrupt
request is generated. Consequently the OF bit also functions as a count overflow interrupt disable for
the iohpmcycles.

6.22. Performance-monitoring event counters (iohpmctr1-31)

These registers are 64-bit WARL counter registers.

Figure 54. Performance-monitoring event counters register fields

Bits Field Attribute Description

63:0 counter WARL Event counter value.

6.23. Performance-monitoring event selectors (iohpmevt1-31)

These performance-monitoring event registers are 64-bit RW registers. When a transaction processed
by the IOMMU causes an event that is programmed to count in a counter then the counter is
incremented. In addition to matching events, the event selector may be programmed with additional
filters based on device_id, process_id, GSCID, and PSCID such that the counter is incremented
conditionally based on the transaction matching these additional filters. When such device_id
based filtering is used, the match may be configured to be a precise match or a partial match. A partial
match allows transactions with a range of IDs to be counted by the counter.
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Figure 55. Performance-monitoring event selector register fields

Bits Field Attribute Description

14:0 eventID WARL Indicates the event to count. A value of 0 indicates no events
are counted.
Encodings 1 to 16383 are reserved for standard events defined
in the Table 17.
Encodings 16384 to 32767 are for designated for custom use.
When eventID is changed, including to 0, the counter
retains its value.

15 DMASK RW When set to 1, partial matching of the DID_GSCID is
performed for the transaction. The lower bits of the
DID_GSCID all the way to the first low order 0 bit (including
the 0 bit position itself) are masked.

35:16 PID_PSCID RW process_id if IDT is 0, PSCID if IDT is 1

59:36 DID_GSCID RW device_id if IDT is 0, GSCID if IDT is 1.

60 PV_PSCV RW If set, only transactions with matching process_id or
PSCID (based on the Filter ID Type) are counted.

61 DV_GSCV RW If set, only transactions with matching device_id or GSCID
(based on the Filter ID Type) are counted.

62 IDT RW Filter ID Type: This field indicates the type of ID to filter on.
When 0, the DID_GSCID field holds a device_id and the
PID_PSCID field holds a process_id. When 1, the
DID_GSCID field holds a GSCID and PID_PSCID field holds
a PSCID.

63 OF RW Overflow status or Interrupt disable

The table below summarizes the filtering option for events that support filtering by IDs.

Table 15. filtering options

IDT DV_GSCV PV_PSCV Operation

0/1 0 0 Counter increments. No ID based filtering.
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IDT DV_GSCV PV_PSCV Operation

0 0 1 If the transaction has a valid process_id, counter increments if
process_id matches PID_PSCID.

0 1 0 Counter increments if device_id matches DID_GSCID.

0 1 1 If the transaction has a valid process_id, counter increments if
device_id matches DID_GSCID and process_id matches
PID_PSCID.

1 0 1 If the transaction has a valid PSCID, counter increments if the
PSCID of that process matches PID_PSCID.

1 1 0 Counter increments if GSCID is valid and matches DID_GSCID.

1 1 1 Counter increments if GSCID is valid and matches DID_GSCID and
if PSCID is valid and matches PID_PSCID.

When filtering by device_id or GSCID is selected and the event supports ID based filtering, the
DMASK field can be used to configure a partial match. When DMASK is set to 1, partial matching of
the DID_GSCID is performed for the transaction. The lower bits of the DID_GSCID all the way to the
first low order 0 bit (including the 0 bit position itself) are masked.

The following example illustrates the use of DMASK and filtering by device_id.

Table 16. DMASK with IDT set to device_id based filtering

DMASK DID_GSCID Comment

0 yyyyyyyy yyyyyyyy yyyyyyyy One specific seg:bus:dev:func

1 yyyyyyyy yyyyyyyy yyyyy011 seg:bus:dev - any func

1 yyyyyyyy yyyyyyyy 01111111 seg:bus - any dev:func

1 yyyyyyyy 01111111 11111111 seg - any bus:dev:func

The following table lists the standard events that can be counted:

Table 17. Standard Events list

eventID Event counted IDT settings supported

0 Do not count

1 Untranslated requests 0

2 Translated requests 0

3 ATS Translation requests 0

4 TLB miss 0/1

5 Device Directory Walks 0

6 Process Directory Walks 0

7 First-stage Page Table Walks 0/1

8 Second-stage Page Table Walks 0/1

9 - 16383 reserved for future standard -
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When the programmed IDT setting is not supported for an event then the associated counter does not
increment.

The OF bit is set when the corresponding iohpmctr1-31 counter overflows, and remains set until
cleared by software. Since iohpmctr1-31 values are unsigned values, overflow is defined as
unsigned overflow. Note that there is no loss of information after an overflow since the counter wraps
around and keeps counting while the sticky OF bit remains set.

If a iohpmctr1-31 counter overflows when the associated OF bit is zero, then a HPM Counter
Overflow interrupt is generated by setting ipsr.pmip bit to 1. If the OF bit is already one, then no
interrupt request is generated. Consequently the OF bit also functions as a count overflow interrupt
disable for the associated iohpmctr1-31.



There are not separate overflow status and overflow interrupt enable bits. In practice,
enabling overflow interrupt generation (by clearing the OF bit) is done in conjunction with
initializing the counter to a starting value. Once a counter has overflowed, it and the OF
bit must be reinitialized before another overflow interrupt can be generated.



In RV32, memory-mapped writes to iohpmevt1-31 modify only one 32-bit part of the
register. The following sequence may be used to update the register without counting
events spuriously due to the intermediate value of the register:

⚫ Write the low order 32-bits to set eventID to 0.

⚫ Write the high order 32-bits with the new desired values.

⚫ Write the low order 32-bits the new desired values, including that of the eventID
field.

Alternatively, the counter may first be inhibited such that no events count during the
update and the inhibit removed after the register has been programmed with the desired
value.



If capabilities.HPM is 1 then a minimum of one programmable event counter
besides the cycles counter is required to comply with this specification. One counter may
be used in a time multiplexed manner to sample events but such analysis may take longer
to complete. The IOMMU, unlike the CPU MMU, services multiple streams of IO and the
HPM may be used by a performance analyst to analyze one or more of those streams
concurrently. Typically, a performance analyst may require four programmable counters to
count events for an IO stream. To support concurrent analysis of at least two streams of IO
it is recommended to support seven programmable counters.

6.24. Translation-request IOVA (tr_req_iova)

The tr_req_iova is a 64-bit register used to implement a translation-request interface for debug.
This register is present when capabilities.DBG == 1.
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Figure 56. Translation-request IOVA register fields

Bits Field Attribute Description

11:0 reserved WPRI Reserved for standard use

63:12 vpn WARL The IOVA virtual page number

6.25. Translation-request control (tr_req_ctl)

The tr_req_ctl is a 64-bit WARL register used to implement a translation-request interface for
debug. This register is present when capabilities.DBG == 1.

Figure 57. Translation-request control register fields

Bits Field Attribute Description

0 Go/Busy RW1S This bit is set to indicate a valid request has been setup in the
tr_req_iova/tr_req_ctl registers for the IOMMU to translate.

The IOMMU indicates completion of the requested translation by clearing
this bit to 0. On completion, the results of the translation are in the
tr_response register.

1 Priv WARL If set to 1, Privileged Mode access is requested else no Privileged Mode
access is not requested.

2 Exe WARL If set to 1, execute permission is requested else execute permission is not
requested.

3 NW WARL If set to 1, read permission is requested. If set to 0, both read and write
permissions are requested.

11:4 reserved WPRI Reserved for standard use

31:12 PID WARL If PV is 1, this field provides the process_id input for this translation
request. If PV is 0 then this field is not used.

32 PV WARL If set to 1, the PID field of the register is valid and provides the
process_id for this translation request. If set to 0 then the PID field is
not used and a process_id is not valid for this translation request.

35:33 reserved WPRI Reserved for standard use.

39:36 custom WPRI Designated for custom use.

63:40 DID WARL This field provides the device_id for this translation request.
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
In RV32, the high half of the register should be written first, followed by the low half, which
includes the Go/Busy bit, to initiate a translation.

6.26. Translation-response (tr_response)

The tr_response is a 64-bit RO register used to hold the results of a translation requested using the
translation-request interface. This register is present when capabilities.DBG == 1.

Figure 58. Translation-response register fields

Bits Field Attribute Description

0 fault RO If the process to translate the IOVA detects a fault then the fault field is
set to 1. The detected fault may be reported through the fault-queue.

6:1 reserved RO Reserved for standard use

8:7 PBMT RO Memory type determined for the translation using the PBMT fields in the
first-stage and/or the second-stage page tables used for the translation.
This value of this field is UNSPECIFIED if the fault field is 1.

9 S RO Translation range size field, when set to 1 indicates that the translation
applies to a range that is larger than 4 KiB and the size of the translation
range is encoded in the PPN field. The value of this field is UNSPECIFIED
if the fault field is 1.
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Bits Field Attribute Description

53:10 PPN RO If the fault bit is 0, then this field provides the PPN determined as a
result of translating the vpn in tr_req_iova.

If the fault bit is 1, then the value of this field is UNSPECIFIED.

If the S bit is 0, then the size of the translation is 4 KiB - a page.

If the S bit is 1, then the translation resulted in a superpage, and the size of
the superpage is encoded in the PPN itself. If scanning from bit position 0
to bit position 43, the first bit with a value of 0 at position X, then the
superpage size is 2X+1 * 4 KiB.

If X is not 0, then all bits at position 0 through X-1 are each encoded with
a value of 1. 

Table 18. Example of encoding of super page size in PPN

PPN S Size

yyyy….yyyy yyyy yyyy 0 4 KiB

yyyy….yyyy yyyy 0111 1 64 KiB

yyyy….yyy0 1111 1111 1 2 MiB

yyyy….yy01 1111 1111 1 4 MiB

59:54 reserved RO Reserved for standard use.

63:60 custom RO Designated for custom use.



An IOMMU implementation is not required to report a superpage translation or support
reporting all possible superpage sizes. An implementation is allowed to report a 4 KiB
translation corresponding to the requested vpn or report a translation size that is smaller
than the superpage size configured in the page tables.

6.27. IOMMU QoS ID (iommu_qosid)

The iommu_qosid register fields are defined as follows:

Figure 59. iommu_qosid register fields

Bits Field Attribute Description

11:0 RCID WARL RCID for IOMMU-initiated requests.

15:12 reserved WPRI Reserved for standard use.

27:16 MCID WARL MCID for IOMMU-initiated requests.

31:28 reserved WPRI Reserved for standard use.

IOMMU-initiated requests for accessing the following data structures use the value programmed in
the RCID and MCID fields of the iommu_qosid register.
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⚫ Device directory table (DDT)

⚫ Fault queue (FQ)

⚫ Command queue (CQ)

⚫ Page-request queue (PQ)

⚫ IOMMU-initiated MSI (Message-signaled interrupts)

When ddtp.iommu_mode == Bare, all device-originated requests are associated with the QoS IDs
configured in the iommu_qosid register.

6.28. Interrupt-cause-to-vector register (icvec)

Interrupt-cause-to-vector register maps a cause to a vector. All causes can be mapped to the same
vector or a cause can be given a unique vector.

The vector is used:

1. By an IOMMU that generates interrupts as MSIs, to index into MSI configuration table
(msi_cfg_tbl) to determine the MSI to generate. An IOMMU is capable of generating interrupts
as a MSI if capabilities.IGS==MSI or if capabilities.IGS==BOTH. When
capabilities.IGS==BOTH the IOMMU may be configured to generate interrupts as MSI by
setting fctl.WSI to 0.

2. By an IOMMU that generates WSI, to determine the wire to signal the interrupt. An IOMMU is
capable of generating wire-signaled- interrupts if capabilities.IGS==WSI or if
capabilities.IGS==BOTH. When capabilities.IGS==BOTH the IOMMU may be
configured to generate wire-signaled- interrupts by setting fctl.WSI to 1.

If an implementation only supports a single vector then all bits of this register may be hardwired to 0
(WARL). Likewise if only two vectors are supported then only bit 0 for each cause could be writable.

Figure 60. Interrupt-cause-to-vector register fields

Bits Field Attribute Description

3:0 civ WARL The command-queue-interrupt-vector (civ) is the vector number
assigned to the command-queue-interrupt.

7:4 fiv WARL The fault-queue-interrupt-vector (fiv) is the vector number assigned to
the fault-queue-interrupt.

11:8 pmiv WARL The performance-monitoring-interrupt-vector (pmiv) is the vector
number assigned to the performance-monitoring-interrupt.
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Bits Field Attribute Description

15:12 piv WARL The page-request-queue-interrupt-vector (piv) is the vector number
assigned to the page-request-queue-interrupt.

31:16 reserved WPRI Reserved for standard use.

63:32 custom WPRI Designated for custom use.

6.29. MSI configuration table (msi_cfg_tbl)

An IOMMU that supports generating IOMMU-originated interrupts (i.e., capabilities.IGS ==
MSI or capabilities.IGS == BOTH) as MSIs implements a MSI configuration table that is
indexed by the vector from icvec to determine a MSI table entry. Each MSI table entry for interrupt
vector x has three registers msi_addr_x, msi_data_x, and msi_vec_ctl_x. These registers are
hardwired to 0 if capabilities.IGS == WSI.

If an access fault is detected on a MSI write using msi_addr_x, then the IOMMU reports a "IOMMU
MSI write access fault" (cause 273) fault, with TTYP set to 0 and iotval set to the value of
msi_addr_x.

Table 19. MSI configuration table structure

bit 63 bit 0 Byte Offset

Entry 0: Message address +000h

Entry 0: Vector Control Entry 0: Message Data +008h

Entry 1: Message address +010h

Entry 1: Vector Control Entry 1: Message Data +018h

… +020h

Figure 61. Message address register fields

Bits Field Attribute Description

1:0 0 RO Fixed to 0

55:2 ADDR WARL Holds the 4-byte aligned MSI address.

63:56 reserved WPRI Reserved for standard use.

Figure 62. Message data register fields

Bits Field Attribute Description

31:0 data WARL Holds the MSI data
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Figure 63. Vector control register fields

Bits Field Attribute Description

0 M RW When the mask bit M is 1, the corresponding interrupt vector is masked
and the IOMMU is prohibited from sending the associated message.
Pending messages for that vector are later generated if the corresponding
mask bit is cleared to 0.

31:1 reserved WPRI Reserved for standard use.
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Chapter 7. Software guidelines

This section provides guidelines to software developers on the correct and expected sequence of using
the IOMMU interfaces. The behavior of the IOMMU if these guidelines are not followed is
implementation defined.

7.1. Reading and writing IOMMU registers

Read or write access to IOMMU registers must follow the following rules:

⚫ Address of the access must be aligned to the size of the access.

⚫ The access must not span multiple registers.

⚫ Registers that are 64-bit wide may be accessed using either a 32-bit or a 64-bit access.

⚫ Registers that are 32-bit wide must only be accessed using a 32-bit access.

7.2. Guidelines for initialization

The guidelines for initializing the IOMMU are as follows:

1. Read the capabilities register to discover the capabilities of the IOMMU.

2. Stop and report failure if capabilities.version is not supported.

3. Read the feature control register (fctl).

4. Stop and report failure if big-endian memory access is needed and the capabilities.END field
is 0 (i.e. only one endianness) and fctl.BE is 0 (i.e. little endian).

5. If big-endian memory access is needed and the capabilities.END field is 1 (i.e. both
endiannesses supported), set fctl.BE to 1 (i.e. big endian) if the field is not already 1.

6. Stop and report failure if wired-signaled-interrupts are needed for IOMMU initiated interrupts
and capabilities.IGS is not WSI.

7. If wired-signaled-interrupts are needed for IOMMU initiated interrupts and
capabilities.IGS is BOTH, set fctl.WSI to 1 if the field is not already 1.

8. Stop and report failure if other required capabilities (e.g. virtual-addressing modes, MSI
translation, etc.) are not supported.

9. The icvec register is used to program an interrupt vector for each interrupt cause. Determine the
number of vectors supported by the IOMMU by writing 0xF to each field and reading back the
number of writable bits. If the number of writable bits is N then the number of supported vectors is
2N. For each cause C associate a vector V with the cause. V is a number between 0 and (2N - 1).

10. If the IOMMU is configured to use wired interrupts, then each vector V corresponds to an interrupt
wire connected to a platform level interrupt controller (e.g. APLIC). Determine the interrupt
controller configuration register to be programmed for each such wire using configuration
information provided by configuration mechanisms such as device tree and program the interrupt
controller.

11. If the IOMMU is configured to use MSI, then each vector V is an index into the msi_cfg_tbl.
For each vector V, allocate a MSI address A and an interrupt identity D. Configure the
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msi_addr_V register with value A, msi_data_V register with value D. Configure the interrupt
mask M in msi_vec_ctl_V register appropriately.

12. To program the command queue, first determine the number of entries N needed in the command
queue. The number of entries in the command queue must be a power of two. Allocate a N x 16-
bytes sized memory buffer that is naturally aligned to the greater of 4-KiB or N x 16-bytes. Let
k=log2(N) and B be the physical page number (PPN) of the allocated memory buffer. Program
the command queue registers as follows:

⚫ temp_cqb_var.PPN = B
⚫ temp_cqb_var.LOG2SZ-1 = (k - 1)
⚫ cqb = temp_cqb_var
⚫ cqt = 0
⚫ cqcsr.cqen = 1
⚫ Poll on cqcsr.cqon until it reads 1

13. To program the fault queue, first determine the number of entries N needed in the fault queue.
The number of entries in the fault queue is always a power of two. Allocate a N x 32-bytes sized
memory buffer that is naturally aligned to the greater of 4-KiB or N x 32-bytes. Let k=log2(N) and
B be the PPN of the allocated memory buffer. Program the fault queue registers as follows:

⚫ temp_fqb_var.PPN = B
⚫ temp_fqb_var.LOG2SZ-1 = (k - 1)
⚫ fqb = temp_fqb_var
⚫ fqh = 0
⚫ fqcsr.fqen = 1
⚫ Poll on fqcsr.fqon until it reads 1

14. To program the page-request queue, first determine the number of entries N needed in the page-
request queue. The number of entries in the page-request queue is always a power of two. Allocate
a N x 16-bytes sized buffer that is naturally aligned to the greater of 4-KiB or N x 16-bytes. Let
k=log2(N) and B be the PPN of the allocated memory buffer. Program the page-request queue
registers as follows:

⚫ temp_pqb_var.PPN = B
⚫ temp_pqb_var.LOG2SZ-1 = (k - 1)
⚫ pqb = temp_pqb_var
⚫ pqh = 0
⚫ pqcsr.pqen = 1
⚫ Poll on pqcsr.pqon until it reads 1

15. To program the DDT pointer, first determine the supported device_id width Dw and the format
of the device-context data structure. If capabilities.MSI is 0, then the IOMMU uses base-
format device-contexts else extended-format device-contexts are used. Allocate a page (4 KiB) of
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memory to use as the root table of the DDT. Initialize the allocated memory to all 0. Let B be the
PPN of the allocated memory. Determine the mode M of the DDT based on Dw and the IOMMU
device-contexts format as follows:

⚫ Determine the values supported by ddtp.iommu_mode by writing legal values and reading it
to see if the value was retained. Stop and report a failure if the supported modes do not support
the required Dw.

⚫ If extended-format device-contexts are used then

a. If Dw is less than or equal to 6-bits and 1LVL is supported then M = 1LVL
b. If Dw is less than or equal to 15-bits and 2LVL is supported then M = 2LVL
c. If Dw is less than or equal to 24-bits and 3LVL is supported then M = 3LVL

⚫ If base-format device-contexts are used then

a. If Dw is less than or equal to 7-bits and 1LVL is supported then M = 1LVL
b. If Dw is less than or equal to 16-bits and 2LVL is supported then M = 2LVL
c. If Dw is less than or equal to 24-bits and 3LVL is supported then M = 3LVL

Program the ddtp register as follows:

⚫ temp_ddtp_var.iommu_mode = M
⚫ temp_ddtp_var.PPN = B
⚫ ddtp = temp_ddtp_var

The IOMMU is initialized and may be now be configured with device-contexts for devices in scope of
the IOMMU.

7.3. Guidelines for invalidations

This section provides guidelines to software on the invalidation commands to send to the IOMMU
through the CQ when modifying the IOMMU in-memory data structures. Software must perform the
invalidation after the update is globally visible. The ordering on stores provided by FENCE
instructions and the acquire/ release bits on atomic instructions also orders the data structure updates
associated with those stores as observed by IOMMU.

A IOFENCE.C command may be used by software to ensure that all previous commands fetched from
the CQ have been completed and committed. The PR and/or PW bits may be set to 1 in the IOFENCE.C
command to request that all previous read and/or write requests, that have already been processed by
the IOMMU, be committed to a global ordering point as part of the IOFENCE.C command.

In subsequent sections, when an algorithm step tests values in the in-memory data structures to
determine the type of invalidation operation to perform, the data values tested are the old values i.e.
values before a change is made.

7.3.1. Changing device directory table entry

If software changes a leaf-level DDT entry (i.e, a device context (DC), of device with device_id = D)
then the following invalidations must be performed:
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⚫ IODIR.INVAL_DDT with DV=1 and DID=D
⚫ If DC.iohgatp.MODE != Bare

⚫ IOTINVAL.VMA with GV=1, AV=PSCV=0, and GSCID=DC.iohgatp.GSCID
⚫ IOTINVAL.GVMA with GV=1, AV=0, and GSCID=DC.iohgatp.GSCID

⚫ else

⚫ If DC.tc.PDTV==1

■ IOTINVAL.VMA with GV=AV=PSCV=0
⚫ else if DC.fsc.MODE != Bare

■ IOTINVAL.VMA with GV=AV=0 and PSCV=1, and PSCID=DC.ta.PSCID

If software changes a non-leaf-level DDT entry the following invalidations must be performed:

⚫ IODIR.INVAL_DDT with DV=0

Between a change to the DDT entry and when an invalidation command to invalidate the cached
entry is processed by the IOMMU, the IOMMU may use the old value or the new value of the entry.

7.3.2. Changing process directory table entry

If software changes a leaf-level PDT entry (i.e, a process context (PC), for device_id=D and
process_id=P) then the following invalidations must be performed:

⚫ IODIR.INVAL_PDT with DV=1, DID=D and PID=P
⚫ If DC.iohgatp.MODE != Bare

⚫ IOTINVAL.VMA with GV=1, AV=0, PV=1, GSCID=DC.iohgatp.GSCID, and
PSCID=PC.PSCID

⚫ else

⚫ IOTINVAL.VMA with GV=0, AV=0, PV=1, and PSCID=PC.PSCID

If software changes a non-leaf-level PDT entry the following invalidations must be performed:

⚫ IODIR.INVAL_DDT with DV=1 and DID=D

Between a change to the PDT entry and when an invalidation command to invalidate the cached entry
is processed by the IOMMU, the IOMMU may use the old value or the new value of the entry.

7.3.3. Changing MSI page table entry

If software changes a MSI page-table entry identified by interrupt file number I that corresponds to
an untranslated MSI address A then the following invalidations must be performed:

⚫ IOTINVAL.GVMA with GV=AV=1, ADDR[63:12]=A[63:12] and
GSCID=DC.iohgatp.GSCID
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To invalidate all cache entries from a MSI page table the following invalidations must be performed:

⚫ IOTINVAL.GVMA with GV=1, AV=0, and GSCID=DC.iohgatp.GSCID

Between a change to the MSI PTE and when an invalidation command to invalidate the cached PTE is
processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value. An
IOFENCE.C command with PW=1 may be used to to ensure that all previous writes, including MSI
writes, that have been previously processed by the IOMMU are committed to a global ordering point
such that they can be observed by all RISC-V harts and IOMMUs in the system.

7.3.4. Changing second-stage page table entry

If software changes a leaf second-stage page-table entry of a VM where the change affects translation
for a guest-PPN G then the following invalidations must be performed:

⚫ IOTINVAL.GVMA with GV=AV=1, GSCID=DC.iohgatp.GSCID, and ADDR[63:12]=G

If software changes a non-leaf second-stage page-table entry of a VM then the following invalidations
must be performed:

⚫ IOTINVAL.GVMA with GV=1, AV=0, GSCID=DC.iohgatp.GSCID

The DC has fields that hold a guest-PPN. An implementation may translate such fields to a supervisor-
PPN as part of caching the DC. If the second-stage page table update affects translation of guest-PPN
held in the DC then software must invalidate all such cached DC using IODIR.INVAL_DDT with
DV=1 and DID set to the corresponding device_id. Alternatively, an IODIR.INVAL_DDT with
DV=0 may be used to invalidate all cached DC.

Between a change to the second-stage PTE and when an invalidation command to invalidate the
cached PTE is processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value.

7.3.5. Changing first-stage page table entry

A DC may be configured with a first-stage page table (when DC.tc.PDTV=0) or a directory of first-
stage page tables selected using process_id from a process-directory-table (when DC.tc.PDTV=1).

When a change is made to a first-stage page table, and the second-stage is Bare, then software must
perform invalidations using IOTINVAL.VMA with GV=0 and AV and PSCV operands appropriate for
the modification as specified in Table 9.

When a change is made to a first-stage page table, and the second-stage is not Bare, then software must
perform invalidations using IOTINVAL.VMA with GV=1, GSCID=DC.iohgatp.GSCID and AV and
PSCV operands appropriate for the modification as specified in Table 9.

Between a change to the first-stage PTE and when an invalidation command to invalidate the cached
PTE is processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value.
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7.3.6. Accessed (A)/Dirty (D) bit updates and page promotions

When IOMMU supports hardware-managed A and D bit updates, if software clears the A and/or D bit
in the first-stage and/or second-stage PTEs then software must invalidate corresponding PTE entries
that may be cached by the IOMMU. If such invalidations are not performed, then the IOMMU may not
set these bits when processing subsequent transactions that use such entries.

When software upgrades a page in a first-stage PT and/or a second-stage PT to a superpage without
first clearing the original non-leaf PTE’s valid bit and invalidating cached translations in the IOMMU
then it is possible for the IOMMU to cache multiple entries that match a single address. The IOMMU
may use either the old non-leaf PTE or the new non-leaf PTE but the behavior is otherwise well
defined.

When promoting and/or demoting page sizes, software must ensure that the original and new PTEs
have identical permission and memory type attributes and the physical address that is determined as
a result of translation using either the original or the new PTE is otherwise identical for any given
input. The only PTE update supported by the IOMMU without first clearing the V bit in the original
PTE and executing a appropriate IOTINVAL command is to do a page size promotion or demotion.
The behavior of the IOMMU if other attributes are changed in this fashion is implementation defined.

7.3.7. Device Address Translation Cache invalidations

When first-stage and/or second-stage page tables are modified, invalidations may be needed to the
DevATC in the devices that may have cached translations from the modified page tables. Invalidation
of such page tables requires generating ATS invalidations using ATS.INVAL command. Software
must specify the PAYLOAD following the rules defined in PCIe ATS specifications [2].

If software generates ATS invalidate requests at a rate that exceeds the average DevATC service rate
then flow control mechanisms may be triggered by the device to throttle the rate. A side effect of this is
congestion spreading to other channels and links which could lead to performance degradation. An
ATS capable device publishes the maximum number of invalidations it can buffer before causing
back-pressure through the Queue Depth field of the ATS capability structure. When the device is
virtualized using PCIe SR-IOV, this queue depth is shared among all the VFs of the device. Software
must limit the number of outstanding ATS invalidations queued to the device advertised limit.

The RID field is used to specify the routing ID of the ATS invalidation request message destination. A
PASID specific invalidation may be performed by setting PV=1 and specifying the PASID in PID.
When the IOMMU supports multiple segments then the RID must be qualified by the destination
segment number by setting DSV=1 with the segment number provided in DSEG.

When ATS protocol is enabled for a device, the IOMMU may still cache translations in its IOATC in
addition to providing translations to the DevATC. Software must not skip IOMMU translation cache
invalidations even when ATS is enabled in the device context of the device. Since a translation request
from the DevATC may be satisfied by the IOMMU from the IOATC, to ensure correct operation
software must first invalidate the IOATC before sending invalidations to the DevATC.
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7.3.8. Caching invalid entries

This specification does not allow the caching of first/second-stage PTEs whose V (valid) bit is clear,
non-leaf DDT entries whose V (valid) bit is clear, Device-context whose V (valid) bit is clear, non-leaf
PDT entries whose V (valid) bit is clear, Process-context whose V (valid) bit is clear, or MSI PTEs whose
V bit is clear. Software need not perform invalidations when changing the V bit in these entries from 0
to 1.

7.3.9. Guidelines for emulating an IOMMU

Certain uses may involve emulating a RISC-V IOMMU. In such cases, the emulator may require the
IOMMU driver to notify the emulator for efficient operation when updates are made to in-memory
data structure entries, including when making such entries valid. Queueing an appropriate
invalidation command when making such updates is a common way to provide notifications to the
emulator. While usually an invalidation is not required when marking an invalid entry as valid, the
emulator may indicate the need to invoke such invalidation commands for emulation efficiency
purposes through a suitable flag in the device tree or ACPI table describing such emulated IOMMU
instances.

7.4. Reconfiguring PMAs

Where platforms support dynamic reconfiguration of PMAs, a machine-mode driver is usually
provided that can correctly configure the platform. In some platforms that might involve platform-
specific operations and if the IOMMU must participate in these operations then platform-specific
operations in the IOMMU are used by the machine-mode driver to perform such reconfiguration.

7.5. Guidelines for handling interrupts from IOMMU

IOMMU may generate an interrupt from the CQ, the FQ, the PQ, or the HPM. Each interrupt source
may be configured with a unique vector or a vector may be shared among one or more interrupt
sources. The interrupt may be delivered as a MSI or a wire-signaled-interrupt. The interrupt handler
may perform the following actions:

1. Read the ipsr register to determine the source of the pending interrupts

2. If the ipsr.cip bit is set then an interrupt is pending from the CQ.

a. Read the cqcsr register.

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the
state of the cmd_to, cmd_ill, and cqmf bits. If any of these bits are set then the CQ
encountered an error and command processing is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in cqcsr by writing 1 to the bits.

i. Clearing all error indication bits in cqcsr re-enables command processing.

d. An IOMMU that supports wired-interrupts may be requested to generate an interrupt from the
command queue on completion of a IOFENCE.C command. This cause is indicated by the
fence_w_ip bit. Note that command processing does not stop when fence_w_ip is set to 1.
Software handler may re-enable interrupts from CQ on IOFENCE.C completions by clearing
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this bit by writing 1 to it.

e. Clear ipsr.cip by writing 1 to the bit.

3. If the ipsr.fip bit is set then an interrupt is pending from the FQ.

a. Read the fqcsr register.

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the
state of the fqmf and fqof bits. If either of these bits are set then the FQ encountered an error
and fault/event reporting is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in fqcsr by writing 1 to the bits.

i. Clearing all error indication bits in cqcsr re-enables fault/event reporting.

d. Clear ipsr.fip by writing 1 to the bit.

e. Read the fqt and fqh registers.

f. If value of fqt is not equal to value of fqh then the FQ is not empty and contains fault/event
reports that need processing.

g. Process pending fault/event reports that need processing and remove them from the FQ by
advancing the fqh by the number of records processed.

4. If the ipsr.pip bit is set then an interrupt is pending from the PQ.

a. Read the `pqcsr`register.

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the
state of the pqmf and pqof bits. If either of these bits are set then the PQ encountered an error
and "Page Request" reporting is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in pqcsr by writing 1 to the bits.

i. Clearing all error indication bits in pqcsr re-enables "Page Request" reporting.

d. Clear ipsr.pip by writing 1 to the bit.

e. Read the pqt and pqh registers.

f. If value of pqt is not equal to the value of pqh then the PQ is not empty and contains "Page
Request" messages that need processing.

g. Process pending "Page Request" messages that need processing and remove them from the PQ
by advancing the pqh by the number of records processed.

i. When a PQ overflow condition occurs, software may observe incomplete page-request
groups due to the "Page Request" messages being dropped. The IOMMU might have
automatically responded (see Section 3.7) to a dropped "Page Request" in such groups if the
"Last Request in PRG" flag was set to 1 in the message. Software should ignore and not
service the such incomplete groups.

ii. The automatic response to the "Page Request" with "Last request in PRG" set to 1 on a PQ
overflow is expected to cause the device to retry the ATS translation request. However,
since the IOMMU generated response was without actually resolving the condition that
caused the "Page Request" to be originally sent by the device, this will likely lead to the
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device sending the "Page Request" messages again. These retried messages may now be
stored in the PQ if the overflow condition has been corrected by creating space in the PQ.

5. If ipsr.pmip bit is set then an interrupt is pending from the HPM.

a. Clear ipsr.pmip by writing 1 to the bit.

b. Process the performance monitoring counter overflows.

7.6. Guidelines for enabling and disabling ATS and/or PRI

To enable ATS and/or PRI:

1. Place the device in an idle state such that no transactions are generated by the device.

2. If the device-context for the device is already valid then first mark the device-context as invalid
and queue commands to the IOMMU to invalidate all cached first/second-stage page table entries,
DDT entries, MSI PT entries (if required), and PDT entries (if required).

3. Program the device-context with EN_ATS set to 1 and if required the T2GPA field set to 1. Set
EN_PRI to 1 if required. If EN_PRI is set to 1 then set PRPR to 1 if required.

4. Mark the device-context as valid.

5. Enable device to use ATS and if required enable the PRI.

To disable ATS and/or PRI:

1. Place the device in an idle state such that no transactions are generated by the device.

2. Disable ATS and/or PRI at the device

3. Set EN_ATS and/or EN_PRI to 0 in the device-context. If EN_ATS is set to 0 then set EN_PRI and
T2GPA to 0. If EN_PRI is set to 0 then set PRPR to 0.

4. Queue commands to the IOMMU to invalidate all cached first/second-stage page table entries,
DDT entries, MSI PT entries (if required), and PDT entries (if required).

5. Queue commands to the IOMMU to invalidate DevATC by generating Invalidation Request
messages.

6. Enable DMA operations in the device.
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Chapter 8. Hardware guidelines

This section provides guidelines to the system/hardware integrator of the IOMMU in the platform.

8.1. Integrating an IOMMU as a PCIe device

The IOMMU may be constructed as a PCIe device itself and be discoverable as a dedicated PCIe
function with PCIe defined Base Class 08h, Sub-Class 06h, and Programming Interface 00h [6].

Such IOMMU must map the IOMMU registers defined in this specification as PCIe BAR mapped
registers.

The IOMMU may support MSI or MSI-X or both. When MSI-X is supported, the MSI-X capability
block must point to the msi_cfg_tbl in BAR mapped registers such that system software can
configure MSI address and data pairs for each message supported by the IOMMU. The MSI-X PBA
may be located in the same BAR or another BAR of the IOMMU. The IOMMU is recommended to
support MSI-X capability.

8.2. Faults from PMA and PMP

The IO bridge may invoke a PMA and/or a PMP checker on memory accesses from IO devices or those
generated by the IOMMU implicitly to access the in-memory data structures. When a memory access
violates a PMA check or violates a PMP check, the IO bridge may abort the memory access as specified
in Section 8.3.

8.3. Aborting transactions

If the aborted transaction is an IOMMU-initiated implicit memory access then the IO bridge signals
such access faults to the IOMMU itself. The details of such signaling is implementation defined.

If the aborted transaction is a write then the IO bridge may discard the write; the details of how the
write is discarded are implementation defined. If the IO protocol requires a response for write
transactions (e.g., AXI) then a response as defined by the IO protocol may be generated by the IO
bridge (e.g., SLVERR on BRESP - Write Response channel). For PCIe, for example, write transactions
are posted and no response is returned when a write transaction is discarded.

If the faulting transaction is a read then the device expects a completion. The IO bridge may provide a
completion to the device. The data, if returned, in such completion is implementation defined; usually
it is a fixed value such as all 0 or all 1. A status code may be returned to the device in the completion to
indicate this condition. For AXI, for example, the completion status is provided by SLVERR on RRESP
(Read Data channel). For PCIe, for example, the completion status field may be set to "Unsupported
Request" (UR) or "Completer Abort" (CA).

8.4. Reliability, Availability, and Serviceability (RAS)

The IOMMU may support a RAS architecture that specifies the methods for enabling error detection,
logging the detected errors (including their severity, nature, and location), and configuring means to
report the error to an error handler.
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Some errors, such as those in the IOATC, may be correctable by reloading the cached in-memory data
structures when the error is detected. Such errors are not expected to affect the functioning of the
IOMMU.

Some errors may corrupt critical internal state of the IOMMU and such errors may lead the IOMMU
to a failed state. Examples of such state may include registers such as the ddtp, cqb, etc. On entering
such a failed state, the IOMMU may request the IO bridge to abort all incoming transactions.

Some errors, such as corruptions that occur within the internal data paths of the IOMMU, may not be
correctable but the effects of such errors may be contained to the transaction being processed by the
IOMMU.

As part of processing a transaction, the IOMMU may need to read data from in-memory data
structures such as the DDT, PDT, or first/second-stage page tables. The provider (a memory controller
or a cache) of the data may detect that the data requested has an uncorrectable error and signal that
the data is corrupted and defer the error to the IOMMU. Such technique to defer the handling of the
corrupted data to the consumer of the data is also commonly known as data poisoning. The effects of
such errors may be contained to the transaction that caused the corrupted data to be accessed.

In the cases where the error affects the transaction being processed but otherwise allows the IOMMU
to continue providing service, the IOMMU may abort (see Section 8.3) the transaction and report the
the fault by queuing a fault record in the FQ. For PCIe, for example, a "Completer Abort (CA)" response
is appropriate to abort the transaction. The following cause codes are used to report such faulting
transactions:

⚫ DDT data corruption (cause = 268)

⚫ PDT data corruption (cause = 269)

⚫ MSI PT data corruption (cause = 270)

⚫ MSI MRIF data corruption (cause = 271)

⚫ Internal data-path error (cause = 272)

⚫ First/second-stage PT data corruption (cause = 274)

If the IO bridge is not capable of signaling such deferred errors uniquely from other errors that
prevent the IOMMU from accessing in-memory data structures then the IOMMU may report such
errors as access faults instead of using the differentiated data corruption cause codes.
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Chapter 9. IOMMU Extensions

This chapter specifies the following standard extensions to the IOMMU Base Architecture:

Specification Version Status

Quality-of-Service (QoS) Identifiers Extension 1.0 Ratified

9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0

Quality of Service (QoS) is defined as the minimal end-to-end performance guaranteed in advance by
a service level agreement (SLA) to a workload. Performance metrics might include measures such as
instructions per cycle (IPC), latency of service, etc.

When multiple workloads execute concurrently on modern processors — equipped with large core
counts, multiple cache hierarchies, and multiple memory controllers — the performance of any given
workload becomes less deterministic, or even non-deterministic, due to shared resource contention [7].

To manage performance variability, system software needs resource allocation and monitoring
capabilities. These capabilities allow for the reservation of resources like cache and bandwidth, thus
meeting individual performance targets while minimizing interference [8]. For resource management,
hardware should provide monitoring features that allow system software to profile workload resource
consumption and allocate resources accordingly.

To facilitate this, the QoS Identifiers ISA extension (Ssqosid) [9] introduces the srmcfg register,
which configures a hart with two identifiers: a Resource Control ID (RCID) and a Monitoring Counter
ID (MCID). These identifiers accompany each request issued by the hart to shared resource controllers.

These identifiers are crucial for the RISC-V Capacity and Bandwidth Controller QoS Register Interface
[10], which provides methods for setting resource usage limits and monitoring resource consumption.
The RCID controls resource allocations, while the MCID is used for tracking resource usage.

The IOMMU QoS ID extension provides a method to associate QoS IDs with requests to access
resources by the IOMMU, as well as with devices governed by it. This complements the Ssqosid
extension that provides a method to associate QoS IDs with requests originated by the RISC-V harts.
Assocating QoS IDs with device and IOMMU originated requests is required for effective monitoring
and allocation of shared resources.

The IOMMU capabilities register (Section 6.3) is extended with a QOSID field which enumerates
support for associating QoS IDs with requests made through the IOMMU. When
capabilities.QOSID is 1, the memory-mapped register layout is extended to add a register named
iommu_qosid (Section 6.27). This register is used to configure the Quality of Service (QoS) IDs
associated with IOMMU-originated requests. The ta field of the device context (Section 3.1.3.3) is
extended with two fields, RCID and MCID, to configure the QoS IDs to associate with requests
originated by the devices.

9.1.1. Reset Behavior

If the reset value for ddtp.iommu_mode field is Bare, then the iommu_qosid.RCID field must
have a reset value of 0.
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

At reset, it is required that the RCID field of iommu_qosid is set to 0 if the IOMMU is
in Bare mode, as typically the resource controllers in the SoC default to a reset behavior
of associating all capacity or bandwidth to the RCID value of 0. When the reset value of
the ddtp.iommu_mode is not Bare, the iommu_qosid register should be initialized
by software before changing the mode to allow DMA.

9.1.2. Sizing QoS Identifiers

The size (or width) of RCID and MCID, as fields in registers or in data structures, supported by the
IOMMU must be at least as large as that supported by any RISC-V application processor hart in the
system.

9.1.3. IOMMU ATC Capacity Allocation and Monitoring

Some IOMMUs might support capacity allocation and usage monitoring in the IOMMU address
translation cache (IOATC) by implementing the capacity controller register interface.

Additionally, some IOMMUs might support multiple IOATCs, each potentially having different
capacities. In scenarios where multiple IOATCs are implemented, such as an IOATC for each
supported page size, the IOMMU can implement a capacity controller register interface for each
IOATC to facilitate individual capacity allocation.
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