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Chapter 1. Introduction

The RISC-V server SoC specification defines a standardized set of capabilities that portable system
software such as operating systems and hypervisors, can rely on being present in a RISC-V server SoC.

A server is a computing system designed to manage and distribute resources, services, and data to
other computers or devices on a network. It is often referred to as a 'server' because it serves or
provides information and resources upon request. Such computing systems are designed to operate
continually and have higher requirements for capabilities such as RAS, security, performance, and
quality of service. Examples of servers include web servers, file servers, database servers, mail servers,
game servers, and more. This specification focuses on defining requirements for general-purpose
server computing systems that may be used for one or more of these purposes.

Applications

Operating System and Hypervisor

Platform BRS interfaces Platform H/W interfaces

RISC-V Server Platform

Boot and Platform Security
Runtime Services Firmware Model

SoC Hardware

Out-of-band mgmt. interfaces In-band mgmt. interfaces

Baseboard Management Controller (BMC)

Figure 1. Components of a RISC-V Server Platform

The RISC-V server platform is defined as the collection of SoC hardware, platform firmware,
boot/runtime services, and security services. The platform provides hardware interfaces (e.g., harts,
timers, interrupt controllers, PCIe root ports, etc.) to portable system software. It also offers a set of
standardized RISC-V boot and runtime services [1] based on the UEFI and ACPI standards. To support
provisioning and platform management, it interfaces with a baseboard management controller (BMC)
through both in-band and out-of-band (OOB) management interfaces. The in-band management
interfaces support the use of standard manageability specifications like MCTP, PLDM, IPMI, and
Redfish for provisioning and management of the operating system executing on the platform. The OOB
interface supports the use of standard manageability specifications like MCTP, PLDM, Redfish, and
IPMI for functions such as power management, telemetry, debug, and provisioning. The RISC-V
security model [2] includes guidelines and requirements for aspects such as debug authorization,
secure/measured boot, firmware updates, firmware resilience, and confidential computing, among
others.

The platform firmware, typically operating at privilege level M, is considered part of the platform and is
usually expected to be customized and tailored to meet the requirements of the SoC hardware (e.g.,
initialization of address decoders, memory controllers, RAS, etc.).
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This specification standardizes the requirements for the hardware interfaces and capabilities (e.g.,
timers, interrupt controllers, PCle root complexes, RAS, QoS, in-band management, etc.) provided by
the SoC to software executing on the application processor harts at privilege levels below M. It
enables OS and hypervisor vendors to support such SoCs with a single binary OS image distribution
model. The requirements posed by this specification represent a standard set of infrastructural
capabilities, encompassing areas where divergence is typically unnecessary and where novelty is
absent across implementations.

To be compliant with this specification, the SoC MUST support all mandatory rules and MUST support
the listed versions of the specifications. This standard set of capabilities MAY be extended by a
specific implementation with additional standard or custom capabilities, including compatible later
versions of listed standard specifications. Portable system software MUST support the specified
mandatory capabilities to be compliant with this specification.

The rules in this specification use the following format:

ID# Rule

CAT_NNN The CAT is a category prefix that logically groups the rules and is followed by 3 digits - NNN
- assigning a numeric ID to the rule.

The rules use the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" that are to be interpreted as described in RFC 2119 [3] when, and only when,
they appear in all capitals, as shown here. When these words are not capitalized, they have
their normal English meanings.

A rule or a group of rules may be followed by non-normative text providing context or justification for the rule.
The non-normative text may also be used to reference sources that are the origin of the rule.

This specification groups the rules in the following broad categories:

® Clocks and Timers

® Interrupt Controllers

® TOMMU

® PCIe subsystem

® Reliability, Availability, and Serviceability
® Quality of Service

® Performance monitoring

® Security
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1.1. Glossary

Most terminology has the standard RISC-V meaning. This table captures other terms used in the
document. Terms in the document prefixed by 'PCIle' have the meaning defined in the PCI Express

(PCIe) Base Specification [4] (even if they are not in this table).

Table 1. Terms and definitions

Term Definition

ACPI Advanced Configuration and Power Interface [5].

ACS Follows PCI Express. Access Control Services. A set of capabilities used to
provide controls over routing of PCle transactions.

AER Advanced Error Reporting. Follows PCI Express. A PCle defined error reporting
paradigm.

AIA RISC-V Advanced Interrupt Architecture.

ATS Follows PCI Express. Address Translation Services.

BAR or Base Follows PCI Express. A register that is used by hardware to show the amount of

Address Register

system memory needed by a PCle function and used by system software to set
the base address of the allocated space.

BMC Baseboard Management Controller. A motherboard resident management
controller that provides functions for platform management.

CXL Compute Express Link bus standard.

DMA Direct Memory Access.

DMTF Distributed Management Task Force. Industry association for promoting systems
management and interoperability.

ECAM Follows PCI Express. Enhanced Configuration Access Method. A mechanism to
allow addressing of Configuration Registers for PCIe functions. In addition to the
PCI Express Base Specification, see the detailed rules in this specification.

EP, EP=1 Follows PCI Express. Also called Data Poisoning. EP is an error flag that
accompanies data in some PClIe transactions to indicate the data is known to
contain an error. Defined in PCI Express Base Specification 6.0 section 2.7.2.
Unless otherwise blocked, the poison associated with the data must continue to
propagate in the SoC internal interconnect.

GPA Guest Physical Address: An address in the virtualized physical memory space of
a virtual machine.

Guest Software in a virtual machine.

Hierarchy ID or

Follows PCI Express. An identifier of a PCIe Hierarchy within which the

Segment ID Requester IDs are unique.

Host Bridge Part of a SoC that connects host CPUs and memory to PCle root ports, RCiEP,
and non-PCle devices integrated in the SoC. The host bridge is placed between
the device(s) and the platform interconnect to process DMA transactions. IO
Devices may perform DMA transactions using IO Virtual Addresses (VA, GVA or
GPA). The host bridge invokes the associated IOMMU to translate the IOVA to
Supervisor Physical Addresses (SPA).

HPM Hardware Performance Monitor.

Hypervisor Software entity that controls virtualization.

RISC-V Server SoC Specification | © RISC-V International



Term

ID

IMSIC

I0 Bridge
IOVA

MCTP

MSI
NUMA
(O
PASID

PBMT

PRI

RCiEP

RCEC

RID or Requester
1D

Root Complex, RC

Root Port, RP

P2P or peer-to-
peer

PLDM
PMA
PMP

Significant Cache

SMBIOS
SoC

SPA
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Definition
Identifier.
Incoming Message-signaled Interrupt Controller.
See host bridge.
1/0 Virtual Address: Virtual address for DMA by devices.

Follows DMTF Standard. Management Component Transport Protocol used for
communication between components of a platform management system.

Message Signaled Interrupts.
Non-uniform memory access.
Operating System.

Follows PCI Express. Process Address Space Identifier: It identifies the address
space of a process. The PASID value is provided in the PASID TLP prefix of the
request.

Page-Based Memory Types.

Page Request Interface. Follows PCI Express. A PCle protocol that enables
devices to request OS memory manager services to make pages resident.

Root Complex Integrated Endpoint. Follows PCI Express. An internal peripheral
that enumerates and behaves as specified in the PCIe standard.

Follows PCI Express. Root Complex Event Collector. A block for collecting errors
and PME messages in a standard way from various internal peripherals.

Follows PCI Express. An identifier that uniquely identifies the requester within a
PCIe Hierarchy. Needs to be extended with a Hierarchy ID to ensure it is unique
across the platform.

Follows PCI Express. Part of the SoC that includes the Host Bridge, Root Port,
and RCiEP.

Follows PCI Express. A PCle port in a Root Complex used to map a Hierarchy
Domain using a PCI-PCI bridge.

Follows PCI Express. Transfer of data directly from one device to another. If the
devices are under different PCle Root Ports or are internal to the SoC this may
involve data movement across the SoC internal interconnect.

Follows DMTF standard. Platform Level Data Model.
Physical Memory Attributes.
Physical Memory Protection.

A large cache that might have significant impact on performance. This
specification recommendeds that a cache with a capacity larger than 32 KiB be
considered a significant cache if it has a significant impact on performance.

System Management BIOS.
System on a chip, also referred as system-on-a-chip and system-on-chip.

Supervisor Physical Address: Physical address used to to access memory and
memory-mapped resources.
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Term

SPDM

SR-IOV

TLP

QoS

UEFI

UR, CA
VM

Definition

Follows DMTF Standard. Security Protocols and Data Models. A standard for
authentication, attestation and key exchange to assist in providing infrastructure
security enablement.

Follows PCI Express. Single-Root I/0 Virtualization.

Follows PCI Express. Transaction Layer Packet. Defined by Chapter 2 of the PCI
Express Base Specification.

Quality of Service. Quality of Service (QoS) is defined as the minimal end-to-end
performance that is guaranteed in advance by a service level agreement (SLA) to
a workload.

Unified Extensible Firmware Interface. [6]
Follows PCI Express. Error returns to an access made to a PCIe hierarchy.

Virtual Machine.
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Chapter 2. Server SoC Requirements

2.1. Clocks and Timers

ID# Rule

CTI_®10 The time CSR MUST increment at a constant frequency and the count MUST be in units of 1
ns. The frequency at which the CSR provides an updated time value MUST be at least 100
MHz.

The Zicntr extension [7] requires the real-time clocks of all harts to be synchronized to within one tick of the
real-time clock.

CTI_020 The time counter MUST appear to be always on and MUST appear to not lose its count across
hart low power idle states, including when the hart is powered off.

This rule does not apply to system power states such as G3 (power off), S3 (Suspend to RAM), or S4 (Hibernate).

Losing time count across hart low power idle states may lead to the hart losing time synchronization with other
application processor harts, potentially causing unexpected behaviors and/or system instability.

Information about whether a hart low power idle state retains timer context may be determined by the
OS/hypervisors using information provided by the ACPI _LPI object or equivalent mechanisms.
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2.2. Interrupt Controllers

This section specifies the requirements on the interrupt controllers used to deliver external interrupts
to the RISC-V application processor harts.

ID# Rule
IIC_010 The RISC-V Advanced Interrupt Architecture [8] MUST be supported.
IIC_020 External interrupts MUST be signaled to a hart as message-signaled interrupts (MSI).

Since Message Signaled Interrupts (MSI) are implemented as memory writes, they facilitate a simplified
enforcement of producer-consumer ordering rules. Specifically, interrupts issued by a device following a write
operation must be processed only after the previous write operations have been completed and observed.
Similarly, interrupts issued by a device must be observed before any subsequent read completions generated by
the device.

MSI is the preferred mechanism for interrupt signaling in PCIe due to its efficiency and support for low-latency
communication between devices and harts. By adopting MSI, systems can achieve faster and more reliable
interrupt handling, essential for high-performance computing environments.

I1IC_030 The Incoming Message-signaled Interrupt Controller (IMSIC) MUST implement an interrupt
file for S-mode.

IIC_040 The IMSIC MUST support at least 5 VS-mode interrupt files.

Supporting 5 VS-mode interrupt files for a hart allows context switching between up to 5 virtual CPUs (vCPU) on
a hart without needing to swap the contents of the interrupt file out to memory. This is particularly beneficial
when devices are directly assigned to virtual machines (VMs), as swapping out the context of an IMSIC interrupt
file may result in longer latencies due to the need to redirect device interrupts to a memory-resident interrupt
file.

IIC_050 The S-mode interrupt file MUST support at least 255 interrupt identities.
IIC_060 The VS-mode interrupt files MUST support at least 63 interrupt identities.
IIC_070 The memory regions designated for IMSIC interrupt files MUST have the following PMAs:

® Not cacheable, non-idempotent, coherent, strongly-ordered (I/0 ordering) channel ® I/0
region

® Support for 4-byte aligned reads and writes.

IIC_080 If the SoC implements devices that use wire-signaled interrupts then the SoC MUST
implement an APLIC as specified by the RISC-V AIA specification and MUST use the APLIC
to convert the wire-signaled interrupts into MSIs.

If implemented, the APLIC MUST support:

® Supervisor interrupt domain.

® GEILEN values matching those implemented by the harts.
® MSI delivery mode.

® Extempore MSI generation using the genmsi register.

SoC devices using wire-signaled interrupts must implement the rules related to ordering of interrupts vs. older
read/writes from devices as specified by the device and/or bus interface specifications that such devices
conform to. See also SID_010.
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2.3. Input-Output Memory Management Unit (IOMMU)

ID# Rule
IOM_010 All IOMMUs in the SoC MUST support the RISC-V IOMMU specification [9].
IOM_020 All DMA capable peripherals (RCiEP and non-PCIe devices) and all PCIe root ports accessible

by software on the RISC-V application processor harts MUST be governed by an IOMMU.
Initiators, such as the following, are exempt from this rule:

® Interrupt controllers, such as the APLIC.
® TOMMUs.
® System Bus Access blocks of Debug Modules.

® Controllers, including the root of trust (RoT) controllers, power management controllers, or
other SoC management controllers, when they access resources reserved for their use.

DMA capable peripherals being governed by an IOMMU allows OS/hypervisors to restrict DMA originating from
such devices to a subset of memory to enhance security and software fault tolerance. The address translation
capability provided by the IOMMU enables usages such as passthrough of such devices to virtual machines,
shared virtual addressing, etc.

The number of IOMMUSs implemented in the SoC to satisfy rule IOM_020 is UNSPECIFIED.
IOM_030 The IOMMU governing a PCle root port MUST support at least 16-bit wide device IDs.

IOM_040 An IOMMU that does not govern a PCle root port MUST support a device ID width required to
support all requester IDs originated by the devices governed by that IOMMU.

IOM_050 The IOMMU MUST implement all the page based virtual memory system modes and
extensions that are implemented by the RISC-V application processor harts in the SoC.

The page based virtual memory system modes supported by the IOMMU are enumerated in the IOMMU
capabilities register.

IOM_070 The IOMMU SHOULD support pass-through mode and MRIF mode MSI address translation.

IOM_080 When MRIF mode MSI address translation is supported, the IOMMU MUST support atomic
updates to the MRIF (enumerated by 1 setting of capabilities.AMO_MRIF).

IOM_090 IOMMU governing PCIe root ports SHOULD support PCIe address translation services (ATS).

High performance devices such as DPU/SmartNICs, GPUs, and FPGASs, utilized in server platforms rely on ATS
and Page Request services to achieve high throughput and low-latency I/0. Supporting ATS is also required for
efficiently accommodating usage models such as Shared Virtual Addressing and direct work submission from
user mode.

IOM_100 IOMMU governing PCle root ports SHOULD support the T2GPA mode of operation with ATS if
ATS is supported.

The T2GPA control enables a hypervisor to prevent DMA from a device, even if the device misuses the ATS
capability and attempts to access memory that is not explicitly authorized by the page tables governing that
device’s memory accesses. The threat model could also include a man-in-the-middle on the PCle link inserting
ATS-translated requests to access memory that was not previously authorized. As an alternative to setting
T2GPA to 1, the hypervisor might establish a trust relationship with the device if authentication protocols such as
SPDM are supported by the device. For PCle, for example, the PCIe Component Measurement and
Authentication (CMA) capability provides a mechanism to verify the device’s configuration and
firmware/executable (Measurement) and hardware identities (Authentication). This mechanism establishes such
a trust relationship, and the PClIe link may be integrity-protected using PCIe integrity and data encryption (IDE)
to defend against a man-in-the-middle adversary.
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ID# Rule

IOM_110 IOMMU governing RCiEP MUST support PClIe address translation services (ATS) if any of the
RCiEPs governed by the IOMMU support the ATS capability.

IOM_120 IOMMU governing RCiEP MAY support the T2GPA mode of operation with ATS if ATS is
supported.

The threats associated with misuse of ATS or malicious insertion of ATS translated requests by a man-in-the-
middle may not be present with RCiEP being integrated in the SoC.

IOM_130 IOMMU MUST support MSI and MAY support wire-signaled interrupts for external interrupts
originated by the IOMMU itself.

IOM_140 IOMMU MUST support little-endian memory access to its in-memory data structures.

IOM_150 IOMMU MAY support big-endian mode memory access to its in-memory data structures.

The IOMMU memory-mapped registers always have a little-endian byte order.
IOM_160 IOMMU MAY support the PCIe PASID capability.

IOM_170 IOMMU that supports PASID capability MUST support 20-bit PASID width and MAY support
8-bit and 17-bit PASID widths.

PClIe specification strongly recommends that hardware implement the maximum width of 20 bits to ensure
interoperability with system software. See also the implementation note on PASID width homogeneity in the
PClIe specification 6.0 section 6.20.2.2.

IOM_180 IOMMU SHOULD support a hardware performance monitor (HPM).

The HPM is a valuable tool for system integrators for performance monitoring and optimizations. An IOMMU is
highly recommended to provide an HPM.

IOM_190 An IOMMU that supports an HPM MUST support the cycles counter.
IOM_200 An IOMMU that supports an HPM MUST incorporate at least 4 event counters.

A typical performance analysis operation may involve simultaneously counting the number of translation
requests, IOATC misses, and page table walks. An HPM with sufficient number of event counters ensures
accurate and comprehensive data collection, enabling detailed performance analysis and optimization.

IOM_210 The cycles counter and the event counters MUST be at least 40 bits wide.

IOM_220 The IOMMU SHOULD support the software debug capabilities enumerated by DBG field in the
capabilities register.

IOM_230 The physical address width supported by the IOMMU MUST be greater than or equal to the
physical address width supported by the RISC-V application processor harts in the SoC.

Having the physical address width greater than or equal to the width supported the harts in the SoC enables use
of all addressable memory for I/0 and facilitates the sharing of page tables between the hart MMU and the
IOMMU.

IOM_240 The reset default of the iommu_mode MUST be 0ff.

The IOMMU disallowing DMA unconditionally following reset due to the mode being Off allows the SoC firmware
and software to enable DMA when suitable security protections as required have been established. The IOMMU
mode being Off at reset does not pose a significant issue to SoC firmware that needs to employ DMA (e.g., for
firmware loading) as that firmware may program the mode in the appropriate IOMMU prior to programming the
peripheral governed by that IOMMU to perform a DMA.

IOM_250 An IOMMU that is implemented as an RCiEP MUST use base class O8H and subclass O6H [
101.
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ID# Rule

The base class O8H and sub-class O6H are designated by PCIe for use by an IOMMU. Implementing the
IOMMU as a PCIe device allows an operating system to determine a driver for the IOMMU and to assign
resources such as interrupt vectors to the IOMMU in a PCIe compatible manner.

IOM_260 The host bridge MUST enforce the physical memory attribute checks and physical memory
protection checks on memory accesses originated by the IOMMU and signal detected access
violations to the IOMMU.

These checks are analogous to the PMA and PMP checks performed by the RISC-V hart. The host bridge (also
known as IO bridge) invokes the IOMMU for address translations. To perform the operations requested by the
host bridge the IOMMU may need to access in-memory data structures such as the device directory table and
page tables.

The physical memory protection limit access from IOMMUSs to phusical addresses to support secure processing
and contain faults. These checks allow restricting the IOMMU to only have access to the same memory that the
hart software that programs the IOMMU has access to.

The IOMMU specification requires an IOMMU to support locating IOMMUs in-memory data structures, in-
memory queues, and page tables in memory address ranges that hold main memory. Support for locating these
in I/0 memory is not required.

IOM_270 An IOMMU MUST support 24-bit device IDs if the IOMMU governs multiple PCIe root ports
that may be part of different PCIe hierarchies.

An IOMMU governing PClIe root ports uses requester ID (RID) - the tuple of bus/device/function numbers (or
just bus/function numbers, if the PCIe ARI option is used) - to locate a device context to use for address
translation and protection. The 16-bit RID uniquely identifies a requester within a hierarchy. This RID needs to be
augmented with the Hierarchy ID (also known as segment ID) - an 8-bit number - to uniquely identify a requester
across PCle hierarchies.

IOM_280 The host bridge MUST provide the PCIe RID as the bits 15:0 of the device_id input to the
IOMMU for requests from PCIe EPs and RCiEP.

IOM_290 When the IOMMU supports 24-bit device IDs, the host bridge MUST specify the segment
number associated with the PCIe hierarchy from which requests were received as the bits
23:16 of the device_id to the IOMMU.

IOM_3008 The determination of device_id input to an IOMMU for requests originating from non-PCle
devices is UNSPECIFIED. If PCIe and non-PCIe endpoints/RCiEP are governed by the same
IOMMU, the SoC MUST ensure that there is no overlap between any device_id associated
with non-PCle devices with any device_id formed using the PCIe RID (and if applicable the
segment ID).

IOM_310 The host bridge MUST provide the 20-bit PASID from the PCIe PASID TLP Prefix as the
process_id input to the IOMMU along with an indication about the validity of the
process_id input. When the process_id is indicated as valid, the host bridge MUST
additionally provide the "Execute Requested" and the "Privilege Mode Requested" bits from
the PASID TLP prefix as input to the IOMMU. When process_id input is indicated as not
valid, the host bridge MUST set the "Execute Requested" and "Privilege Mode Requested"”
inputs to ©.

The host bridge providing the full 20-bit value without truncation from the PASID TLP prefix to the IOMMU
enables the IOMMU to determine if the PASID value is wider than supported by the current configuration of the
process directory table for that device and generate a fault notification if so.

IOM_320 The determination of process_id, "Execute Requested", and "Privilege Mode Requested"
inputs to an IOMMU for requests originating from non-PCle devices is UNSPECIFIED.
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2.4. PCle Subsystem

A PClIe subsystem consists of a root complex with a collection of root ports, root complex event
collectors (RCECs), root complex register blocks (RCRBs), and root complex integrated end points
(RCiEPs). The root complex implements a host bridge to connect the PCIe root ports, RCECs, RCRBs,
and RCiEP, to the CPU and system memory in the SoC through an interconnect.

Memory CPU

SoC Interconnect
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Figure 2. PCIe root complex

One or more root ports in a root complex may be part of a hierarchy where a hierarchy is a PCI Express
I/0 interconnect topology, wherein the Configuration Space addresses, referred to as the tuple of
Bus/Device/Function Numbers (or just Bus/Function Numbers, for PCIe ARI cases), are unique. These
addresses are used for Configuration Request routing, Completion routing, some Message routing, and
for other purposes. In some contexts a Hierarchy is also called a Segment, and in Flit Mode, the
Segment number is sometimes also included in the ID of a Function. Each root port in a hierarchy
originates a hierarchy domain i.e. a part of a Hierarchy originating from a single Root Port. The root
ports are PCI-PCI bridges that bridge a primary PCle bus to a range of secondary and subordinate

buses.

In some SoCs, PCle devices may be integrated in the same package/die as the root complex.
Examples of such devices are network controllers, USB host controllers, NVMe controllers, AHCI
controllers, etc. Such SoC integrated devices may be presented to software using one of the following

options:

1. Presented to software as a PCle endpoint (EP; See section 1.3.2.2 of the PCIe 6.0 specification)
connected to a PCle root port (See example of such an endpoint connected to root port 3 in Figure
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2). Such PCIe endpoints must comply with the PCIe specified rules for endpoints.

2. Presented to software as a root complex integrated endpoint (RCiEP; See section 1.3.2.3 of the
PCIe 6.0 specification). Such PCIe endpoints must comply with the PCIe specified rules for RCiEP.

Implementing integrated devices that perform as RCIiEP or EP allows the use of standardized PCle
frameworks for memory and interrupt resource allocation, virtualization (SR-IOV), ATS/PRI for shared
virtual addressing, trusted I0 using SPDM/TDISP, RAS frameworks like data poisoning and AER, power
management, etc.

The host bridge is placed between the device(s) and the system interconnect to process DMA
transactions. Devices perform DMA transactions using IO Virtual Addresses (VA, GVA or GPA). The
host bridge invokes the associated IOMMU to translate the IOVA to Supervisor Physical Addresses
(SPA).

RCI_010 The PCle root ports, host bridges, RCRBs, and RCECs in the root compplex MUST
implement all software visible rules defined by the PCle specification 6.0 for the root
complex as applicable.

2.4.1. Enhanced Configuration Access Method (ECAM)

Each PCIe endpoint and the PClIe root port itself implement a set of memory mapped configuration
registers that are accessed using the PCIle enhanced configuration access method (ECAM). The
memory mapped ECAM address range for a hierarchy is up to 256 MiB in size and the base address of
the range is naturally aligned to the size. Each PCIe function is associated with a 4 KiB page in this
range such that the address bits (20+b):20 where b=0 to 7 identify the bus number of that function
(see also recommendations in the PCle specification 6.0 section 7.2.2), the address bits 19:15 identify
the device number, and the address bits 14:12 identify the function number. The host bridge in
conjunction with the SoC boot firmware maps the ECAM address range to the hierarchy domain
originating at each PClIe root port.

ID# Rule

ECM_010 The ECAM address ranges MUST have the following physical memory attributes (PMAs):

® Not cacheable, non-idempotent, coherent, strongly-ordered (I/0 ordering) channel ® I/0
region

® One, two, and four byte naturally aligned read and write MUST be supported and MUST
result in a single PCIe Configuration Request.

See also the implementation note on root complex requirements for generating configuration requests in section
7.2.2 of PCIe specification 6.0.

ECM_020 Writes to the ECAM address range from a RISC-V hart MUST be non-posted and the write
MUST complete at the hart only after a completion is received from the function hosting the
accessed configuration register.

Besides performing a write, software executing on a hart must not require any additional actions to achieve this

property.

This rule satisfies the processor and host bridge implementation requirement mentioned in the “Ordering
Considerations for the Enhanced Configuration Access Mechanism” implementation note of the PCIe 6.0
specification.
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ID# Rule

ECM_030 The ECAM address range for a hierarchy MUST be contiguous and the base address of the
range MUST be naturally aligned to the size of the ECAM address range associated with the
hierarchy.

ECM_040 A SoC MAY support multiple hierarchies. When multiple hierarchies are supported, the ECAM
address range of the hierarchies MUST NOT overlap, but they are not required to be
contiguous.

ECM_050 The configuration space of the PCIe root ports MUST be associated with the primary bus

number of the hierarchy associated with the root port.

PClIe root ports are PCI-PCI bridges that bridge the primary bus to the secondary/subordinate buses. The root
port itself enumerates as a PCI-PCI bridge device on the primary bus. The collection of primary, secondary, and
subordinate buses are part of a single hierarchy domain that originates at that PCIe root port.

ECM_060 The configuration space of functions on the primary bus MUST be accessible irrespective of
the state of the corresponding PClIe link.

Discovery and activation of the PClIe link requires accessing the configuration space registers of the PCIe root
port itself and the PCIe root port is a PCI-PCI bridge device on the primary bus.

ECM_070 The PCle root port MUST support the PCIe Configuration RRS software (CRS) visibility enable
control.

The number of times a configuration request is retried on an RRS response is UNSPECIFIED.

ECM_080 Read and/or write to the ECAM range of the hierarchy domain originating at a root port MUST
generate PCIe configuration transactions as type ® or type 1 configuration transactions
following the rules specified for ECAM in PCle specification 6.0.

Determination of the type of configuration transaction based on whether the access is to the primary, secondary
or subordinate buses may involve logic in the host bridge to work in conjunction with the root port PCIe
controller. See also Alternative Routing-ID Interpretation in PCIe specification 6.0 section 6.13 for rules related
to converting type 1 configuration requests into type ® configuration request based on the traditional Device
Number field being ®. Specifically, when ARI forwarding is disabled, write accesses to configuration space of
Device Number greater than ® must be silently dropped, and read accesses must be responded to with all 1s
data.

ECM_090 Read access to ECAM address range from a RISC-V hart MUST be responded with all 1s data
if any of the following conditions are TRUE:

® Access is to a non-existent function on the primary bus of a hierarchy domain.

® Accessed bus is not part of any of the hierarchy domains.

An Unsupported Request or Completer Abort response was received.

A completion timeout occurs.
® Access targets a function downstream of a root port whose link is not in DL_Active state.

® A PCIe RRS response was received on each retry of the configuration read and CRS
software visibility is not enabled.

® PCle CRS software visibility is enabled, but the access does not target the vendor ID
register, and a RRS response was received on each retry of the configuration read.

The data response to the Vendor ID register on receipt of an RRS response MUST follow the PCIe defined rules.
See also the recommendations in PCIe specification 6.0 section 2.3.2.

ECM_100 Write access from a RISC-V hart to configuration registers of a non-existent function on the
primary bus MUST be dropped (silently ignored or discarded) and the write completed. Such
accesses MUST NOT lead to any other behavior (e.g., hangs, deadlocks, etc.).
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ID# Rule

ECM_110 Poisoned data received from completers (EP=1) MUST be forwarded to the requesting RISC-V
hart as poisoned data unless such forwarding is disallowed (e.g., SoC does not support data
poisoning or forwarding of poisoned data is disabled though implementation defined means).
If forwarding of poisoned data is disallowed then the poisoned data MUST be replaced with
all 1s data.

2.4.2. PClIe Memory Space

ID# Rule

MMS_010 The SoC MUST support designating, for each hierarchy domain, one or more ranges of system
physical addresses that may be used for mapping memory space of endpoints in that
hierarchy domain using the 64-bit wide base address registers (BARs) of the endpoints.

MMS_020 SoC MUST support designating, for each hierarchy domain, at least one system physical
address range for mapping memory space of endpoints in that hierarchy domain using 32-bit
wide BARs of the endpoint.

The ranges suitable for mapping using 32-bit BARs are also sometimes termed as the low MMIO ranges and
those suitable for use with 64-bit BARs termed as high MMIO ranges.

_The bit 3 of the Base Address Register used to called the “Prefetchable” bit and required PCIe functions to
support 64-bit addressing for any BAR that requested "Prefetchable" memory space. The "Removing
Prefetchable Terminology" ECN [PCI_PREF] reworks the PCIe Base Specification to remove Prefetchable
terminology to more accurately reflect modern device and system requirements.

MMS_030 The system physical address ranges designated for mapping endpoint memory spaces have
the following physical memory attribute (PMAs):

® MUST be not cacheable, non-idempotent, coherent, strongly-ordered (I/O ordering)
channel © I/0 region.

® MUST support all aligned and unaligned access sizes that can be generated by data
requests from any of the RISC-V application processor harts in the SoC or by peer
endpoints, including those of type RCiEP.

® MAY support atomics, instruction fetch, and page walks.

® Naturally aligned data requests of size up to 8 bytes from the RISC-V application
processor harts in the SoC or by peer endpoints, including those of type RCiEP, MUST
result in a single PCIe Memory Request to the target device.

Software may use the Svpbmt extension to override the PMA to NC if such an override is compatible with the
restricted programming model of the device.

See also the implementation note on optimizations based on restricted programming mode in section 2.3.1 of
PClIe specification 6.0.

See also first/last DW byte enable rules in section 2.2.5 of PCIe specification 6.0.
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ID#

MMS_040

Rule

A load from a RISC-V application processor hart to memory ranges designated for mapping
memory spaces of endpoints or RCiIEP MUST complete with an all 1s response and MUST
NOT lead to any abnormal behavior (e.g., hangs, deadlocks, etc.) if any of the following are

TRUE:

® Address is not within any of the following address ranges:

® Address range defined by memory base/limit or 64-bit memory base/limit registers

of any root port.
® BAR (including when EA capability is used) mapped range of any RCiEP.
® BAR (including when EA capability is used) mapped range of any root port.
® The PClIe link of the root port to which the access is routed is not active.
® TIncluding due to the root port entering downstream port containment state.
® A UR or a CA response is received from the completer.

® A completion timeout occurs.

The 64-bit memory base/limit register was previously called Prefetchable Memory Base/Limit. The concept of
“Prefetchable” MMIO was originally needed to control PCI-PCI Bridges, which were allowed/encouraged to
prefetch Memory Read data in prefetchable regions. The original intent of the Prefetchable/Non-Prefetchable
distinction was focused on PCI behaviors, and was not intended for software use in determining memory
attributes and/or coding techniques. The "Removing Prefetchable Terminology" ECN [PCI_PREF] reworks the
PClIe Base Specification to remove Prefetchable terminology.

See also the implementation note on optimizations based on restricted programming mode in section 2.3.1 of
PClIe specification 6.0.

MMS_050

MMS_060

MMS_070

MMS_080

A store from a RISC-V application processor hart to memory ranges designated for mapping

memory space of endpoints or RCiIEP MUST be dropped (silently ignored or discarded) and

MUST NOT lead to any abnormal behavior (e.g., hangs, deadlocks, etc.) if any of the following
are TRUE:

® Address is not within any of the following address ranges:

® Address range defined by memory base/limit or 64-bit memory base/limit registers

of any root port.
® BAR (including when EA capability is used) mapped range of any RCiEP.
® BAR (including when EA capability is used) mapped range of any root port.
® The PClIe link of the root port to which the access is routed is not active.
® Including due to the root port entering downstream port containment state.

Poisoned data received from completers (EP=1) MUST be forwarded to the requester PCle
device (a RCIiEP or an endpoint) as poisoned data unless such forwarding is disallowed (e.g.,
poisoned TLP egress blocking).

Poisoned data received from completers (EP=1) MUST be forwarded to a requester RISC-V
hart as poisoned data unless such forwarding is disallowed through implementation defined
means. When such forwarding is disallowed, then the poisoned data MUST be replaced with
all 1s data.

SoC MUST NOT use EA capability to indicate memory resources for allocation to endpoints
downstream of a PClIe root port.
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2.4.3. Access Control Services (ACS)

The PCIe ACS provides controls on routing of PCIe TLPs. ACS controls may be used to determine
whether the TLP should be routed normally, blocked, or redirected. These controls may be applicable
to the root complex, switches, multi-function devices, and SR-IOV capable devices.

ID#

ACS_010

ACS_020

Rule

PCIe root ports and SoC integrated downstream switch ports MUST support the following
PCIe access control services (ACS) controls:

® ACS source validation.

® ACS translation blocking.

® ACS I/0 request blocking.

If a PCIe root port or a SoC-integrated downstream switch port implements a memory BAR,
then it SHOULD support the PCIe ACS DSP memory target access control.

The ACS DSP memory target access control can be used to prevent unauthorized accesses to protected memory
spaces such as the PCle root port’s BAR mapped registers.

ACS_030

ACS_040

Root ports and SoC-integrated downstream switch ports that support direct routing between
root ports or direct routing from ingress to egress port of a root port MUST support the
following PCIe ACS controls:

® ACS P2P request redirect.

® ACS P2P completion redirect.

® ACS upstream forwarding.

® ACS direct translated P2P.

Root ports and SoC-integrated downstream switch ports that support direct routing between
root ports or direct routing from ingress to egress port of a root port SHOULD also support
ACS P2P egress control.

More commonly, P2P routing is accomplished by forwarding the TLP to the host bridge for routing. For further
information, refer to the application note accompanying Fig 2-14 and Section 1.3.1 of the PCIe specification 6.0.

2.4.4. Address Routed Transactions

The rules in this section apply to treatment in the root complex of TLPs that are routed by address. An
address carried in such transactions may be the address of a host memory location or the address of a
location in the memory space of an endpoint or RCiEP.

ID#

ADR_010

Rule

The host bridge MUST request IOMMU translations for addresses (Translated, Untranslated,
or a PClIe ATS address translation request) used in the request by endpoints and RCiEPs.
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ID# Rule

The IOMMU must be invoked even for Translated requests to allow determination of whether the requester is
configured by software to use Translated requests.

When the IOMMU operates in the T2GPA mode, it provides a GPA as the translated address in response to a
PCIe ATS address translation requests. In this mode of operation, the IOMMU must be invoked by the host
bridge for Translated requests to translate the GPA to an SPA.

When ACS direct translated P2P controls are enabled, the Translated requests may not be routed through the
host bridge. In such cases, if direct P2P routing of these requests is not desired, due to security and/or
functional reasons (e.g., when operating in T2GPA mode), software should utilize the ACS controls to direct these
requests to the root complex.

ADR_020 The host bridge MUST enforce physical memory attribute checks and physical memory
protection checks on the translated address provided by the IOMMU and MUST treat violating
requests as Unsupported Requests.

These checks are analogous to the PMA and PMP checks performed by the RISC-V hart.

ADR_030 For Translated and Untranslated requests, the host bridge MUST use the translated addresses
provided by the IOMMU to determine whether the transaction is targeting host memory or
peer device memory.

ADR_040 The host bridge MAY support devices accessing peer devices' memory. If peer device memory
access is not enabled (either by design or configuration), then such accesses MUST be
responded to with a UR/CA response. The host bridge MUST NOT cause any other errors (e.g.,
hang, deadlock, etc.) when rejecting access by a device to a peer device’s memory.

A virtual machine may violate the peer-to-peer access policies and/or configurations enforced by the hypervisor
and/or SoC firmware, which prohibit peer device memory accesses. In instances where a VM configures devices
passed through to it to perform peer memory accesses, such attempts must not result in system instabilities
(e.g., hangs, deadlocks, etc.) or errors. Compliance with this directive ensures system resilience against
unauthorized access attempts, maintaining operational integrity.

ADR_050 When a posted or non-posted-with-data request from a device is allowed to access peer
device memory, then any poisoned data (EP=1) MUST be forwarded as poisoned data, unless
such forwarding is disallowed (e.g., due to poisoned TLP egress blocking or lack of support for
data poisoning in the SoC).

ADR_060 Host memory writes resulting from posted or non-posted-with-data requests with poisoned
data (EP=1) MUST mark such data as poisoned in the host memory.

ADR_070 Host memory reads that encounter uncorrectable data errors detected within the SoC MUST
result in a response with poisoned data (EP=1) if transmission of poisoned TLPs is not
blocked (see also section 2.7.2.1 of PCle specification 6.9).

2.4.5. ID Routed Transactions

The rules in this section apply to treatment in the root complex of TLPs that are routed by ID. Such
requests may be Configuration requests, ID routed messages or completions.

ID# Rule

IDR_®10 Configuration requests from endpoints and RCiEP MUST be treated as Unsupported
Requests.

IDR_020 P2P routing of PCIe VDM between root ports within or across hierarchies SHOULD be
supported.
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ID# Rule

MCTP transport protocols using PCIe VDM are used by the BMC to manage PCIe/CXL devices. These messages
are used to support manageability protocols such as PLDM, NVMe-MI, Redfish, etc. Supporting P2P routing of
VDMs such as those carrying MCTP protocol messages enables greater system design flexibility in supporting
these management protocols.

IDR_O30 P2P routing of PCIe VDM to/from RCIeP MAY be supported.

2.4.6. Cacheability and Coherence

ID# Rule

CCS_010 The host bridge MUST enforce PCIe memory ordering rules and SHOULD support the relaxed
ordering (RO) and ID-based ordering (IDO).

An implementation may occasionally or never permit the relaxations allowed by RO and/or IDO attributes. Such
implementations will result in a more conservative interpretation of the ordering rules, but they will not result in
a violation of the ordering rules.

CCS_020 Writes to host or device memory using the RO attribute set to ® MUST be observed by other
harts and bus mastering devices in the order in which the write was received by the PCle root
port or the host bridge, ensuring that all previous writes are globally observed before the
RO=0 write is globally observed.

CCS_030 The host bridge MUST enforce the idempotency, coherence, cacheability, and access type
physical memory attributes of the accessed memory and perform any reordering or combining
of PCIe transactions only if the combination of physical memory attributes and TLP-specified
memory ordering attributes allow it.

CCS_040 The host bridge SHOULD implement hardware enforced cache coherency, irrespective of the
“No Snoop” attribute in the TLP, unless it has been configured through UNSPECIFIED means
to not enforce coherency for TLPs with “No Snoop” attribute set to 1.

A PCle requester is permitted to set the “No Snoop” in transactions it initiates that do not require hardware
enforced cache coherency. Host bridges that do not support isochronous VCs or can meet deadlines with
hardware enforced coherency may always enforce coherency. Enforcing cache coherency is always conservative
and will not lead to data corruption.

Modern systems with integrated memory controllers and snoop directories may not require the use of “No
Snoop” to meet the latency targets as memory regions accessed for isochronous operations would usually be
device exclusive. PCle requires a function to guarantee that addresses accessed using “No Snoop” set to 1 are
not cached in any of the caches and software that instructs a device to perform “No Snoop” transactions must
only do so when it can provide this guarantee.

Some caches in a SoC may perform clean evictions to memory. In such SoCs, if the addresses used by the non-
snooped transactions may be cached (e.g., due to speculative accesses from a hart), then such clean evictions
may cause data corruption, even if the caches were explicitly cleaned by software using the cache management
operations. To ensure data integrity, software should use memory that has such non-cacheable PMA or use the
Svpbmt extension to override the PMA to NC/IO, thereby implementing the guarantee required by the PCle
specification when using the “No Snoop” attribute set to 1. If the Svpbmt extension was used to override the
PMA, then use of cache management operations defined by Zichom extension may be necessary to flush data
that might already be cached.

See also section 7.5.3.4 of PCIe specification 6.0.

CCS_050 The host bridge MUST NOT violate the coherence physical memory attribute if the “No
Snoop” attribute in the TLP is .
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ID# Rule

CCS_060 The interpretation of the TLP processing hints (TPH) by the SoC is UNSPECIFIED.

A future extension of the RISC-V IOMMU specification may define a standard interpretation of the TPH including
the use of ATS memory attributes (AMA) for performing cache management.

2.4.7. Message signaled interrupts

A message signaled interrupt (MSI or MSI-X) is the preferred interrupt signaling mechanism in PCle.

ID# Rule
MSI_010 Message Signaled Interrupts MUST be supported.
MSI_020 SoC MUST NOT support INTx virtual wire based interrupt signaling.

PClIe supports INTx emulation to support legacy PCI interrupt mechanisms. Modern SoC and devices are not
expected be limited by the lack of this emulation mode.

2.4.8. Precision Time Measurement (PTM)

ID# Rule
PTM_010 PClIe root ports MAY support PCIe PTM capability.

Several applications such as instrumentation, media servers, telecom servers, etc. require high precision
monitoring and tracking of time. The PCIe PTM protocol supports synchronization of multiple devices/functions
to a common shared PTM master time provided by the PTM root.

PTM_020 When PCle PTM capability is supported, the SoC MUST make the PTM master time available
to the operating system.

The mechanism to make the master time available to the operating system is implementation specific.

Making PTM master time available to software enables software to translate timing information between local
time and PTM master time and thereby enable coordination of events across multiple PCIe devices.

PTM_030 When PCle PTM capability is supported, the PTM master time MUST be 64-bit wide.

PTM_040 When PCle PTM capability is supported, the PTM master time MUST use the same or higher
resolution clock than the clock used to increment time CSR of the RISC-V application
processor harts.

2.4.9. Error/Event Reporting

ID# Rule

AER_O10 PClIe root ports MUST support advanced error reporting (AER) capability for reporting errors
from connected devices or the errors detected by the root port itself.

AER capability defines more robust error reporting as compared to the baseline error reporting capability.
AER_020 PCIe root ports MUST support the downstream port containment (DPC) capability.

AER_O30 PClIe root ports MUST support the RP PIO controls.
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ID# Rule

The root port programmed I/0 (PIO) controls enable fine-grained control over handling of non-posted requests
that encounter errors and allows handling of such errors as either uncorrectable or advisory based on policies
established by the operating system.

AER_040 A RCiEP in the SoC SHOULD support the AER capability if it detects any of the errors defined
by PCIe specification 6.0 (See section 6.2.7).

AER_O50 A RCiEP in the SoC MUST support the AER capability if it supports the ACS capability.

AER_O60 SoC MUST implement one or more PCIe RCEC in the root complex if any of the RCiEP
implement the AER capability or implement PME signaling.

AER_O70 The PCIe RCEC implemented in a SoC MUST implement the RCEC endpoint association
extended capability.

AER_080 PClIe root port configuration registers MUST NOT be affected, except as required to update
status associated with the transition to DL_Down (see also section 2.9.1 of PCle specification
6.09).

Retaining port configurations on transition to DL_Down state is important to support hot-plug.

2.4.10. Vendor Specific Registers

ID# Rule

VSR_010 Vendor specific registers in the root ports, host bridge, RCiEP, and RCRB MUST be
implemented using one or more of the following capabilities:
® Vendor specific capability.
® Vendor specific extended capability.
® Designated Vendor Specific extended capability.

VSR_020 SoC MUST NOT require hypervisor and/or operating system interaction with PCIle
configuration space registers that are not defined by an industry standard. Non-standard
vendor specific registers, if implemented in the PCIe configuration space, must only be used
by the SoC firmware.

Some industry standards such a CXL may define standard DVSEC structures in the PCIe configuration space.

The preferred way to implement device/SoC vendor specific registers that need to be used by drivers in the run-
time environment is to implement them in the memory space of the device. Certain operating systems and
hypervisors may disallow and/or require mediating access to the PCIe configuration space of devices. See also
the implementation note in the PCle specification 6.0 section 7.2.2.2.

2.4.11. SoC-Integrated PCle Devices

ID# Rule

SID_®10 SoC-integrated PCle devices MUST implement all software visible rules defined by the PCle
specification 6.0 for an EP or RCiEP as applicable.

Implementing integrated devices as RCIiEP or EP allows the use of standardized frameworks for memory and
interrupt resource allocation, virtualization (SR-IOV), ATS/PRI, shared virtual addressing, trusted IO using
SPDM/TDISP, participate in RAS frameworks like data poisoning and AER, power management, etc.

SID_020 SoC-integrated PCle devices MUST NOT require the use of I/0 space or I/0 transactions.

RISC-V Server SoC Specification | © RISC-V International



2.4. PCle Subsystem | Page 24

ID# Rule

SID_030 SoC integrated PCle devices that cache address translations MUST implement the PCle ATS
capability if the address translation cache needs management by the operating system or
hypervisors.

SID_040 SoC-integrated PCle devices that support PCIe SR-IOV capability SHOULD support the MSI-
X capability.

MSI-X capability enables virtual machines to assign interrupt resources to virtual functions without needing
access to the configuration space of the function. Access to the configuration space of the virtual function is
usually mediated by the hypervisor.

SID_050 SoC-integrated PCle devices MAY support the PASID capability. When PASID capability is
supported, the devices SHOULD support a 20-bit wide PASID.

Endpoints are recommended to support a 20-bit wide PASID to ensure interoperability with system software.
See also the implementation note on PASID width homogeneity in the PCIe specification 6.0 section 6.20.2.2.

SID_060 SoC-integrated PCIe devices (a multi-function device or an SR-IOV capable device) that
support P2P traffic among functions (including among SR-IOV virtual functions) of the device
MUST support the following PCIe ACS controls:

® ACS P2P request redirect.
® ACS P2P completion redirect.

® ACS direct translated P2P.

SID_070 If the BAR registers are implemented by SoC-integrated PCle devices then they MUST be
programmable. The Memory Space Indicator (bit ®) of such BAR registers MUST be 1, and
they SHOULD support being mapped anywhere in the 64-bit memory space.

SID_080 RCiEP MAY support the PCIe enhanced allocation (EA) capability for fixed allocation of
memory resources. If EA capability is used then the BEI of the entries MUST be one of ®
through 5 or 9 through 14 and their primary/secondary properties must be one of ® through 4
or OxFF.

SID_090 SoC-integrated PCle devices MUST support the PCle defined baseline error reporting
capability and MAY support PCIe Advanced Error Reporting capability. If PCIe ACS controls
are supported then the PCIe Advanced Error Reporting capability MUST be supported.

See PCIe specification 6.0 section 7.5.1.1.14.

SID_100 A RCiEP that supports PCIe Advanced Error Reporting MUST be associated with a Root
Complex Event Collector.
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2.5. Reliability, Availability, and Serviceability (RAS)

ID# Rule

RAS_010 The level of RAS implemented by the SoC is UNSPECIFIED.

The level of RAS implemented by an SoC depends on the reliability goals established for the SoC, which are
commonly measured using metrics such as failure-in-time (FIT) and defects-per-million (DPM). Achieving these
goals requires a combination of fault prevention, error detection, and error correction techniques.

This specification strongly recommends the implementation of error detection and correction codes for storage
elements like significant caches and memories. Furthermore, it suggests utilizing mechanisms such as single-
symbol (SSC) ECC in DRAM controllers to address failure scenarios, such as when all bits in a single DRAM
device experience a failure.

Additionally, this specification encourages the adoption of mechanisms like periodic scrubbing, also known as
patrol scrubbing. These mechanisms proactively identify and rectify errors before they accumulate to a critical
point, surpassing the capability of the implemented error correction codes. For instance, this could involve
addressing situations where single bit errors escalate into double bit errors, surpassing the correction code’s
capacity.

RAS_020 SoC SHOULD support the generation, storage, and forwarding of poisoned data. The
granularity at which data is poisoned is UNSPECIFIED.

When an uncorrected data error is detected by a component, it might allow potentially corrupted data to reach
the data requester, but with an associated poison indicator. These errors are referred to as uncorrected deferred
errors (UDE), as they enable the detecting component to continue functioning and postpone addressing the error
until a later time, assuming the poisoned data gets consumed. If a component (such as a hart, an IOMMU, a
device, etc.) consumes the poisoned data, it triggers an uncorrected urgent error (UUE), leading to the invocation
of a recovery handler for immediate remedial actions, as further deferral of the error is not feasible.

The technique of data poisoning facilitates delaying the handling of uncorrected errors until the moment the
corrupted data is actually consumed. Data poisoning offers a more precise identification of the software and/or
hardware component affected by the data corruption. This specificity allows for targeted recovery actions that
impact only the affected components.

To ensure the integrity of the poisoned data indicator when stored, error detection and correction codes should
be applied. This practice prevents subsequent errors from leading to the silent consumption of the corrupted
data.

Data poisoning also empowers the implementation of error containment features supported by industry
standards like PCIe and CXL.

For more detailed discussions on the treatment of faults and errors, refer to the RISC-V RERI specification.

RAS_030 If poisoned data needs to be transmitted from a first component to a second component that
lacks the ability to manage poison, the first component MUST trigger an critical uncorrected
error report instead of silently transmitting the corrupted data.

Some components serve as intermediaries through which data passes. For instance, a PCIe/CXL port acts as an
intermediary that receives data from memory but doesn’t consume it; rather, it forwards the data to an endpoint.
In such cases, the intermediary component might encounter poisoned data. While this component can propagate
the error and avoid logging an error, a different scenario arises when the destination component (such as a PCIe
endpoint) cannot handle poison. In such situations, the originating component must trigger an urgent error
signal instead of transmitting the poisoned data without the associated poison indicator. Failing to do so would
breach the containment of the corrupted data during propagation.

RAS_040 The SoC SHOULD support the RISC-V RAS error record register interface (RERI) [11] for error
logging and signaling.

RISC-V Server SoC Specification | © RISC-V International



2.5. Reliability, Availability, and Serviceability (RAS) | Page 26

ID# Rule

RAS_050 When RERI is supported, the RAS error records MUST include the capability to individually
enable error signaling for each severity - Uncorrected Error Critical (UEC), Uncorrected Error
Deferred (UED), and Corrected Error (CE) - of error that could be logged in that specific error
record.

Configurable enables provide software with the flexibility of using an event-based or polling-based error logging
for both corrected errors and deferred errors. Typically, software operates in an event-based mode for critical
errors, as these errors necessiate immediate remedial action when they arise.

RAS_060 If RERI is supported, RAS error records MUST preserve the state of logged error information
(including status, address, information, supplemental information, and timestamp) across a
RAS-initiated reset. The state of RAS error records MAY persist across other types of
implementation-defined resets. After a reset, including a RAS-initiated reset, the state of the
control register in the RAS error record is considered UNSPECIFIED.

Some errors may lead a hardware component to enter a failure mode in which it becomes incapable of servicing
additional requests- colloquially termed jammed' or 'wedged'. In these situations, the SoC may require a reset to
restore it to an operational state (a RAS-initiated reset). Preserving the RAS error records through such resets
enables the SoC firmware and system software to retrieve these error records during boot following such a reset,
facilitating logging and analysis.

RAS_070 If RERI is supported, the RAS error records MAY support error record injection, which is
intended to facilitate RAS handler verification.

Verifying the correct implementation of RAS handlers presents a formidable challenge, given the impracticality
of deterministically inducing all potential errors within the SoC to validate the RAS handler’s adherence to
desired recovery protocols. An unverified RAS handler can lead to undesired behavior during error occurrences,
potentially reducing SoC availability or affecting its serviceability.

To address this, error record injection offers a convenient method for conducting such verification. It allows the
introduction of a range of error signatures, which can then be signaled and observed. While hardware error
injection techniques also offer a means of verification (e.g., methods to intentionally corrupt a data location
protected by an error detection code), providing open access to these capabilities for software use might not
align with security and stability concerns.

RAS_080 If RERI is supported, then the hardware components in the SoC that support error correction
MUST incorporate a corrected error counter within their respective error records. Additionally,
these components MUST support the signaling of counter overflows.

Counting corrected errors offers a more precise assessment of system reliability. Enabling signaling upon
counter overflow empowers software to define a suitable threshold for logging and analysis of these corrected
errors.

Certain hardware units might maintain a history of corrected errors and increment the corrected error counter
only if the error differs from a previously reported one. Additionally, some hardware units could incorporate low-
pass filters like leaky buckets, which regulate the rate at which corrected errors are reported and counted. This
rule pertains to corrected errors tracked by the error record once the hardware component determines reporting
and counting based on its specific filtering rules.
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2.6. Quality of Service

Quality of Service (Q0S) refers to the minimum end-to-end performance that a service level agreement
(SLA) guarantees to an application in advance. QoS capabilities within the SoC offer mechanisms that
system software can leverage to manage interference to an application, effectively diminishing
performance variability caused by other applications' utilization of shared resources such as cache
capacity, memory bandwidth, interconnect bandwidth, power consumption, and more.

ID# Rule

QOS_010 The SoC SHOULD incorporate QoS mechanisms to mitigate unwarranted performance
interference that arises when multiple workloads access shared resources like caches and
system memory.

QOS_020 The SoC SHOULD integrate support for the RISC-V capacity and bandwidth controller register
interface (CBQRI) [12] in significant shared caches and the memory controllers.

QOS_030 If CBQRI is supported, RISC-V harts within the application processors of the SoC MUST
include support for the srmcfg CSR. Furthermore, this CSR MUST support a minimum of 16
RCIDs and at least 32 MCIDs. The count of RCID and MCID that can be used in the SoC
SHOULD scale with the number of RISC-V harts in the SoC.

The srmcfg CSR is provided by the Ssqosid extension [13].

Q0S_040 If CBQRI is supported, the IOMMUs in the SoC SHOULD incorporate support for the CBQRI-
defined extension, enabling the association of RCID and MCID with requests initiated by
devices and the IOMMU.

QOS_050 If CBQRI is supported, significant caches such as the last-level cache in the SoC SHOULD
support cache capacity allocation.

QOS_060 If CBQRI is supported, significant caches such as the last-level cache in the SoC SHOULD
incorporate support for monitoring cache capacity usage.

QO0S_070 If CBQRI is supported, the memory controllers within the SoC SHOULD include support for
bandwidth allocation.

Q0S_080 If CBQRI is supported, the memory controllers in the SoC SHOULD include support for
monitoring bandwidth usage.

The method employed by the SoC for bandwidth throttling and control is specific to its implementation. It is
advisable for the implementation to utilize a scheme that results in a deviation of no more than +/- 10 % from
the target set by system software through the CBQRI interface.

QO0S_090 If CBQRI is supported, the count of RCID and MCID supported by capacity controllers,
bandwidth controllers, and all RISC-V application processor harts in the SoC MUST be
consistent.

Portable system software could opt to limit itself to accommodating the minimum count of RCID and MCID
across the controllers. This approach avoids the complexity of dealing with unequal numbers of RCID and MCID
across controllers, which would otherwise necessitate intricate allocations and constraints on workload
placement.

QOS_100 If CBQRI is supported, the monitoring counters in the capacity and bandwidth controllers
MUST be sufficiently wide to not overflow when sampled at a rate of 1 Hz.

As an illustration, consider an HBM3 memory interface that can facilitate data transfers at a rate of up to 1 TB/s.
This scenario would necessitate a 34-bit counter to prevent overflow when sampled at a frequency of 1 Hz.
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2.7. Manageability

This section outlines the guidelines for RISC-V server SoCs to incorporate a standardized set of
protocols and standards for server management. The SoC interfaces with a baseboard management
controller (BMC) through in-band and out-of-band (OOB) management agents. The in-band
management agents execute on the RISC-V application processor harts and the out-of-band
management agents execute on a management controller in the SoC.

The out-of-band management interface facilitates the monitoring of sensors (e.g., temperature, power,
etc.), parameter control (e.g., power limits, etc.), and logging (e.g., RAS error records, etc.) by the BMC
without participation of software on the application processor harts. The in-band management
interface facilitates system configuration (e.g., boot order, memory domains, secure boot, network,
etc.), and event log collection through management agents in the OS and/or firmware that executes on
the application processor harts.

This specification strongly recommends the use of the DMTF Redfish [14], DMTF Platform Level Data
Model (PLDM) [15], and DMTF Management Component Transport Protocol (MCTP) [16]) protocols for
in-band and out-of-band server management.

This specification strongly recommends the use of DMTF specified Security Protocol and Data Model
(SPDM) [17] for device attestation and using SPDM encrypted messages [18] for secure in-band and
out-of-band communication with the BMC. SPDM authentication protocols support establishing a trust
relationship between the manageability agents in the SoC and the BMC. Use of SPDM secured
messages enables preserving the confidentiality and integrity of data exchanged between the BMC
and the manageability agents in the SoC.

The specification recommends supporting Intelligent Platform Management Interface (IPMI) [19] due
to the widespread use of this protocol for server management functions such as credentials
provisioning and remote power control.

This specification recommends the RISC-V server SoC to support open standards for server
management through supporting integration with technologies such as the datacenter-ready secure
control module (DC-SCM) [20] specified by the Open Compute Project for server management,
security, and control features.

Adhering to the industry standard management protocols such as those specified by DMTF and OCP
allows server platforms built with RISC-V server SoCs to seamlessly integrate into the server
management frameworks and tools employed by data centers and enterprises.

ID# Rule

MNG_010 The SoC SHOULD incorporate support for an x1 PCIe lane, preferably Gen 5, but at least Gen
3, to establish a connection with the BMC.
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ID# Rule

This interface is commonly linked to a BMC as a PCIe endpoint, serving various purposes. These include
facilitating host-to-BMC communication for tasks like video output (e.g., remote KVM support), MCTP transport
over PCIe VDM, and hosting a USB controller. The BMC might also support remote presence capabilities, like
remote media redirection and support for keyboard and mouse functions through virtual USB.

The in-band network interfaces serve as communication channels for system software to interact with the BMC.
This interaction employs protocols like the Redfish host interface.

Furthermore, the PCle interface to the BMC empowers the BMC, using SoC-routed PCIe VDMs, to utilize these
VDMs for transmitting MCTP messages. These messages manage platform devices, including network
controllers, NVMe controllers, FPGAs, GPUs, and more.

MNG_020 The SoC SHOULD support the use of 12C based IPMI SSIF for in-band management agents
in the SoC to communicate with the BMC.

MNG_030 The SoC SHOULD incorporate support for utilizing a UART connection to the BMC, enabling
the provision of a host debug console.
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2.8. Performance Monitoring

ID# Rule

SPM_010 Significant caches within the SoC SHOULD incorporate an HPM capable of counting:

® Cache lookups for reads
® Cache misses on reads
® Cache lookups for writes
® Cache misses on writes

It is recommended that a cache with a capacity that is approximately 16 KiB or larger be considered a significant
cache.

SPM_020 The memory controllers within the SoC SHOULD incorporate an HPM capable of counting:

® Read bandwidth
® Write bandwidth
SPM_030 The PCle ports within the SoC SHOULD incorporate an HPM capable of counting:

® Read bandwidth (from system memory)
® Write bandwidth (to system memory)

SPM_040 The SoC SHOULD incorporate an HPM capable of counting the average latency of a read
request from a memory requester (e.g., a hart, a PCIe host bridge, etc.) in the SoC.

Bandwidth and latency are the most commonly used performance metrics to guide workload placement and
tuning.

SPM_050 If the SoC supports NUMA configurations, then the HPM for SPM_010, SPM_020, SPM_030,
and SPM_040 SHOULD support filtering the counting based on whether the request is to
local memory or to remote memory.

SPM_060 All PCIe Gen6 ports within the SoC SHOULD incorporate support for the Flit performance
measurement extended capability defined by PCIe specification 6.0.

Please refer to Section 2.3 for details on the IOMMU performance monitoring rules.
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2.9. Security Requirements

ID# Rule
SEC_010 The Server SoC MUST implement a hardware RoT as the primary root of trust.

A root of trust (RoT) is the foundation on which all secure operations of a system depend. A hardware RoT is a
dedicated and possibly isolated trusted subsystem that can provide stronger protections against physical and
logical attacks.

SEC_020 The PClIe root ports within the SoC SHOULD support PCIe Integrity and Data Encryption (IDE)
capability.

The IDE extension adds optional capabilities to perform hardware encryption and integrity checks on packets
transferred across PCle links. This addition provides confidentiality, integrity, and replay protection against
hardware-level attacks.

SEC_030 The SoC SHOULD support encryption of off-chip DRAM using a transient memory encryption
key that has at least 256-bit key lengths.

Off-chip memory encryption provides protection to critical assets in memory such as credentials, data encryption
keys, and other secrets.

SEC_040 The cryptographic modules used to implement PCle and off-chip DRAM encryption SHOULD
comply with security requirements specified by relevant security standards from national
standards laboratories.

FIPS 140-3 is an example of such a standard

SEC_050 The SoC SHOULD have the capability of interfacing with a Trusted Platform Module (TPM)
that adheres to the TPM 2.0 Library specification [21].

A TPM enhances security by providing secure storage for sensitive information such as credentials and
passwords, cryptographic operations and protection against tampering or unauthorized access.
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