Vector Assembly Code Examples

The following are provided as non-normative text to help explain the vector ISA.

Vector-vector add example

    # vector-vector add routine of 32-bit integers
    # void vvaddint32(size_t n, const int*x, const int*y, int*z)
    # { for (size_t i=0; i<n; i++) { z[i]=x[i]+y[i]; } }
    #
    # a0 = n, a1 = x, a2 = y, a3 = z
    # Non-vector instructions are indented
vvaddint32:
    vsetvli t0, a0, e32, m1, ta, ma  # Set vector length based on 32-bit vectors
    vle32.v v0, (a1)         # Get first vector
      sub a0, a0, t0         # Decrement number done
      slli t0, t0, 2         # Multiply number done by 4 bytes
      add a1, a1, t0         # Bump pointer
    vle32.v v1, (a2)         # Get second vector
      add a2, a2, t0         # Bump pointer
    vadd.vv v2, v0, v1       # Sum vectors
    vse32.v v2, (a3)         # Store result
      add a3, a3, t0         # Bump pointer
      bnez a0, vvaddint32    # Loop back
      ret                    # Finished

Example with mixed-width mask and compute.

# Code using one width for predicate and different width for masked
# compute.
#   int8_t a[]; int32_t b[], c[];
#   for (i=0;  i<n; i++) { b[i] =  (a[i] < 5) ? c[i] : 1; }
#
# Mixed-width code that keeps SEW/LMUL=8
  loop:
    vsetvli a4, a0, e8, m1, ta, ma   # Byte vector for predicate calc
    vle8.v v1, (a1)               # Load a[i]
      add a1, a1, a4              # Bump pointer.
    vmslt.vi v0, v1, 5            # a[i] < 5?

    vsetvli x0, a0, e32, m4, ta, mu  # Vector of 32-bit values.
      sub a0, a0, a4              # Decrement count
    vmv.v.i v4, 1                 # Splat immediate to destination
    vle32.v v4, (a3), v0.t        # Load requested elements of C, others undisturbed
      sll t1, a4, 2
      add a3, a3, t1              # Bump pointer.
    vse32.v v4, (a2)              # Store b[i].
      add a2, a2, t1              # Bump pointer.
      bnez a0, loop               # Any more?

Memcpy example

    # void *memcpy(void* dest, const void* src, size_t n)
    # a0=dest, a1=src, a2=n
    #
  memcpy:
      mv a3, a0 # Copy destination
  loop:
    vsetvli t0, a2, e8, m8, ta, ma   # Vectors of 8b
    vle8.v v0, (a1)               # Load bytes
      add a1, a1, t0              # Bump pointer
      sub a2, a2, t0              # Decrement count
    vse8.v v0, (a3)               # Store bytes
      add a3, a3, t0              # Bump pointer
      bnez a2, loop               # Any more?
      ret                         # Return

Conditional example

# (int16) z[i] = ((int8) x[i] < 5) ? (int16) a[i] : (int16) b[i];
#

loop:
    vsetvli t0, a0, e8, m1, ta, ma # Use 8b elements.
    vle8.v v0, (a1)         # Get x[i]
      sub a0, a0, t0        # Decrement element count
      add a1, a1, t0        # x[i] Bump pointer
    vmslt.vi v0, v0, 5      # Set mask in v0
    vsetvli x0, x0, e16, m2, ta, mu  # Use 16b elements.
      slli t0, t0, 1        # Multiply by 2 bytes
    vle16.v v2, (a2), v0.t  # z[i] = a[i] case
    vmnot.m v0, v0          # Invert v0
      add a2, a2, t0        # a[i] bump pointer
    vle16.v v2, (a3), v0.t  # z[i] = b[i] case
      add a3, a3, t0        # b[i] bump pointer
    vse16.v v2, (a4)        # Store z
      add a4, a4, t0        # z[i] bump pointer
      bnez a0, loop

SAXPY example

# void
# saxpy(size_t n, const float a, const float *x, float *y)
# {
#   size_t i;
#   for (i=0; i<n; i++)
#     y[i] = a * x[i] + y[i];
# }
#
# register arguments:
#     a0      n
#     fa0     a
#     a1      x
#     a2      y

saxpy:
    vsetvli a4, a0, e32, m8, ta, ma
    vle32.v v0, (a1)
    sub a0, a0, a4
    slli a4, a4, 2
    add a1, a1, a4
    vle32.v v8, (a2)
    vfmacc.vf v8, fa0, v0
    vse32.v v8, (a2)
    add a2, a2, a4
    bnez a0, saxpy
    ret

SGEMM example

# RV64IDV system
#
# void
# sgemm_nn(size_t n,
#          size_t m,
#          size_t k,
#          const float*a,   // m * k matrix
#          size_t lda,
#          const float*b,   // k * n matrix
#          size_t ldb,
#          float*c,         // m * n matrix
#          size_t ldc)
#
#  c += a*b (alpha=1, no transpose on input matrices)
#  matrices stored in C row-major order

#define n a0
#define m a1
#define k a2
#define ap a3
#define astride a4
#define bp a5
#define bstride a6
#define cp a7
#define cstride t0
#define kt t1
#define nt t2
#define bnp t3
#define cnp t4
#define akp t5
#define bkp s0
#define nvl s1
#define ccp s2
#define amp s3

# Use args as additional temporaries
#define ft12 fa0
#define ft13 fa1
#define ft14 fa2
#define ft15 fa3

# This version holds a 16*VLMAX block of C matrix in vector registers
# in inner loop, but otherwise does not cache or TLB tiling.

sgemm_nn:
    addi sp, sp, -FRAMESIZE
    sd s0, OFFSET(sp)
    sd s1, OFFSET(sp)
    sd s2, OFFSET(sp)

    # Check for zero size matrices
    beqz n, exit
    beqz m, exit
    beqz k, exit

    # Convert elements strides to byte strides.
    ld cstride, OFFSET(sp)   # Get arg from stack frame
    slli astride, astride, 2
    slli bstride, bstride, 2
    slli cstride, cstride, 2

    slti t6, m, 16
    bnez t6, end_rows

c_row_loop: # Loop across rows of C blocks

    mv nt, n  # Initialize n counter for next row of C blocks

    mv bnp, bp # Initialize B n-loop pointer to start
    mv cnp, cp # Initialize C n-loop pointer

c_col_loop: # Loop across one row of C blocks
    vsetvli nvl, nt, e32, m1, ta, ma  # 32-bit vectors, LMUL=1

    mv akp, ap   # reset pointer into A to beginning
    mv bkp, bnp # step to next column in B matrix

    # Initialize current C submatrix block from memory.
    vle32.v  v0, (cnp); add ccp, cnp, cstride;
    vle32.v  v1, (ccp); add ccp, ccp, cstride;
    vle32.v  v2, (ccp); add ccp, ccp, cstride;
    vle32.v  v3, (ccp); add ccp, ccp, cstride;
    vle32.v  v4, (ccp); add ccp, ccp, cstride;
    vle32.v  v5, (ccp); add ccp, ccp, cstride;
    vle32.v  v6, (ccp); add ccp, ccp, cstride;
    vle32.v  v7, (ccp); add ccp, ccp, cstride;
    vle32.v  v8, (ccp); add ccp, ccp, cstride;
    vle32.v  v9, (ccp); add ccp, ccp, cstride;
    vle32.v v10, (ccp); add ccp, ccp, cstride;
    vle32.v v11, (ccp); add ccp, ccp, cstride;
    vle32.v v12, (ccp); add ccp, ccp, cstride;
    vle32.v v13, (ccp); add ccp, ccp, cstride;
    vle32.v v14, (ccp); add ccp, ccp, cstride;
    vle32.v v15, (ccp)


    mv kt, k # Initialize inner loop counter

    # Inner loop scheduled assuming 4-clock occupancy of vfmacc instruction and single-issue pipeline
    # Software pipeline loads
    flw ft0, (akp); add amp, akp, astride;
    flw ft1, (amp); add amp, amp, astride;
    flw ft2, (amp); add amp, amp, astride;
    flw ft3, (amp); add amp, amp, astride;
    # Get vector from B matrix
    vle32.v v16, (bkp)

    # Loop on inner dimension for current C block
 k_loop:
    vfmacc.vf v0, ft0, v16
    add bkp, bkp, bstride
    flw ft4, (amp)
    add amp, amp, astride
    vfmacc.vf v1, ft1, v16
    addi kt, kt, -1    # Decrement k counter
    flw ft5, (amp)
    add amp, amp, astride
    vfmacc.vf v2, ft2, v16
    flw ft6, (amp)
    add amp, amp, astride
    flw ft7, (amp)
    vfmacc.vf v3, ft3, v16
    add amp, amp, astride
    flw ft8, (amp)
    add amp, amp, astride
    vfmacc.vf v4, ft4, v16
    flw ft9, (amp)
    add amp, amp, astride
    vfmacc.vf v5, ft5, v16
    flw ft10, (amp)
    add amp, amp, astride
    vfmacc.vf v6, ft6, v16
    flw ft11, (amp)
    add amp, amp, astride
    vfmacc.vf v7, ft7, v16
    flw ft12, (amp)
    add amp, amp, astride
    vfmacc.vf v8, ft8, v16
    flw ft13, (amp)
    add amp, amp, astride
    vfmacc.vf v9, ft9, v16
    flw ft14, (amp)
    add amp, amp, astride
    vfmacc.vf v10, ft10, v16
    flw ft15, (amp)
    add amp, amp, astride
    addi akp, akp, 4            # Move to next column of a
    vfmacc.vf v11, ft11, v16
    beqz kt, 1f                 # Don't load past end of matrix
    flw ft0, (akp)
    add amp, akp, astride
1:  vfmacc.vf v12, ft12, v16
    beqz kt, 1f
    flw ft1, (amp)
    add amp, amp, astride
1:  vfmacc.vf v13, ft13, v16
    beqz kt, 1f
    flw ft2, (amp)
    add amp, amp, astride
1:  vfmacc.vf v14, ft14, v16
    beqz kt, 1f                 # Exit out of loop
    flw ft3, (amp)
    add amp, amp, astride
    vfmacc.vf v15, ft15, v16
    vle32.v v16, (bkp)            # Get next vector from B matrix, overlap loads with jump stalls
    j k_loop

1:  vfmacc.vf v15, ft15, v16

    # Save C matrix block back to memory
    vse32.v  v0, (cnp); add ccp, cnp, cstride;
    vse32.v  v1, (ccp); add ccp, ccp, cstride;
    vse32.v  v2, (ccp); add ccp, ccp, cstride;
    vse32.v  v3, (ccp); add ccp, ccp, cstride;
    vse32.v  v4, (ccp); add ccp, ccp, cstride;
    vse32.v  v5, (ccp); add ccp, ccp, cstride;
    vse32.v  v6, (ccp); add ccp, ccp, cstride;
    vse32.v  v7, (ccp); add ccp, ccp, cstride;
    vse32.v  v8, (ccp); add ccp, ccp, cstride;
    vse32.v  v9, (ccp); add ccp, ccp, cstride;
    vse32.v v10, (ccp); add ccp, ccp, cstride;
    vse32.v v11, (ccp); add ccp, ccp, cstride;
    vse32.v v12, (ccp); add ccp, ccp, cstride;
    vse32.v v13, (ccp); add ccp, ccp, cstride;
    vse32.v v14, (ccp); add ccp, ccp, cstride;
    vse32.v v15, (ccp)

    # Following tail instructions should be scheduled earlier in free slots during C block save.
    # Leaving here for clarity.

    # Bump pointers for loop across blocks in one row
    slli t6, nvl, 2
    add cnp, cnp, t6                         # Move C block pointer over
    add bnp, bnp, t6                         # Move B block pointer over
    sub nt, nt, nvl                          # Decrement element count in n dimension
    bnez nt, c_col_loop                      # Any more to do?

    # Move to next set of rows
    addi m, m, -16  # Did 16 rows above
    slli t6, astride, 4  # Multiply astride by 16
    add ap, ap, t6         # Move A matrix pointer down 16 rows
    slli t6, cstride, 4  # Multiply cstride by 16
    add cp, cp, t6         # Move C matrix pointer down 16 rows

    slti t6, m, 16
    beqz t6, c_row_loop

    # Handle end of matrix with fewer than 16 rows.
    # Can use smaller versions of above decreasing in powers-of-2 depending on code-size concerns.
end_rows:
    # Not done.

exit:
    ld s0, OFFSET(sp)
    ld s1, OFFSET(sp)
    ld s2, OFFSET(sp)
    addi sp, sp, FRAMESIZE
    ret

Division approximation example

# v1 = v1 / v2 to almost 23 bits of precision.

vfrec7.v v3, v2             # Estimate 1/v2
  li t0, 0x3f800000
vmv.v.x v4, t0              # Splat 1.0
vfnmsac.vv v4, v2, v3       # 1.0 - v2 * est(1/v2)
vfmadd.vv v3, v4, v3        # Better estimate of 1/v2
vmv.v.x v4, t0              # Splat 1.0
vfnmsac.vv v4, v2, v3       # 1.0 - v2 * est(1/v2)
vfmadd.vv v3, v4, v3        # Better estimate of 1/v2
vfmul.vv v1, v1, v3         # Estimate of v1/v2

Square root approximation example

# v1 = sqrt(v1) to more than 23 bits of precision.

  fmv.w.x ft0, x0           # Mask off zero inputs
vmfne.vf v0, v1, ft0        #   to avoid DZ exception
vfrsqrt7.v v2, v1, v0.t     # Estimate r ~= 1/sqrt(v1)
vmfne.vf v0, v2, ft0, v0.t  # Mask off +inf to avoid NV
  li t0, 0x3f800000
  fli.s ft0, 0.5
vmv.v.x v5, t0              # Splat 1.0
vfmul.vv v3, v1, v2, v0.t   # t = v1 r
vfmul.vf v4, v2, ft0, v0.t  # 0.5 r
vfmsub.vv v3, v2, v5, v0.t  # t r - 1
vfnmsac.vv v2, v3, v4, v0.t # r - (0.5 r) (t r - 1)
                            # Better estimate of 1/sqrt(v1)
vfmul.vv v1, v1, v2, v0.t   # t = v1 r
vfmsub.vv v2, v1, v5, v0.t  # t r - 1
vfmul.vf v3, v1, ft0, v0.t  # 0.5 t
vfnmsac.vv v1, v2, v3, v0.t # t - (0.5 t) (t r - 1)
                            # ~ sqrt(v1) to about 23.3 bits

C standard library strcmp example

  # int strcmp(const char *src1, const char* src2)
strcmp:
    ##  Using LMUL=2, but same register names work for larger LMULs
    li t1, 0                # Initial pointer bump
loop:
    vsetvli t0, x0, e8, m2, ta, ma  # Max length vectors of bytes
    add a0, a0, t1          # Bump src1 pointer
    vle8ff.v v8, (a0)       # Get src1 bytes
    add a1, a1, t1          # Bump src2 pointer
    vle8ff.v v16, (a1)      # Get src2 bytes

    vmseq.vi v0, v8, 0      # Flag zero bytes in src1
    vmsne.vv v1, v8, v16    # Flag if src1 != src2
    vmor.mm v0, v0, v1      # Combine exit conditions

    vfirst.m a2, v0         # ==0 or != ?
    csrr t1, vl             # Get number of bytes fetched

    bltz a2, loop           # Loop if all same and no zero byte

    add a0, a0, a2          # Get src1 element address
    lbu a3, (a0)            # Get src1 byte from memory

    add a1, a1, a2          # Get src2 element address
    lbu a4, (a1)            # Get src2 byte from memory

    sub a0, a3, a4          # Return value.

    ret

Fractional Lmul example

This appendix presents a non-normative example to help explain where compilers can make good use of the fractional LMUL feature.

Consider the following (admittedly contrived) loop written in C:

void add_ref(long N,
    signed char *restrict c_c, signed char *restrict c_a, signed char *restrict c_b,
    long *restrict l_c, long *restrict l_a, long *restrict l_b,
    long *restrict l_d, long *restrict l_e, long *restrict l_f,
    long *restrict l_g, long *restrict l_h, long *restrict l_i,
    long *restrict l_j, long *restrict l_k, long *restrict l_l,
    long *restrict l_m) {
  long i;
  for (i = 0; i < N; i++) {
    c_c[i] = c_a[i] + c_b[i]; // Note this 'char' addition that creates a mixed type situation
    l_c[i] = l_a[i] + l_b[i];
    l_f[i] = l_d[i] + l_e[i];
    l_i[i] = l_g[i] + l_h[i];
    l_l[i] = l_k[i] + l_j[i];
    l_m[i] += l_m[i] + l_c[i] + l_f[i] + l_i[i] + l_l[i];
  }
}

The example loop has a high register pressure due to the many input variables and temporaries required. The compiler realizes there are two datatypes within the loop: an 8-bit 'char' and a 64-bit 'long *'. Without fractional LMUL, the compiler would be forced to use LMUL=1 for the 8-bit computation and LMUL=8 for the 64-bit computation(s), to have equal number of elements on all computations within the same loop iteration. Under LMUL=8, only 4 registers are available to the register allocator. Given the large number of 64-bit variables and temporaries required in this loop, the compiler ends up generating a lot of spill code. The code below demonstrates this effect:

.LBB0_4:                                # %vector.body
                                        # =>This Inner Loop Header: Depth=1
    add     s9, a2, s6
    vsetvli s1, zero, e8,m1,ta,mu
    vle8.v  v25, (s9)
    add     s1, a3, s6
    vle8.v  v26, (s1)
    vadd.vv v25, v26, v25
    add     s1, a1, s6
    vse8.v  v25, (s1)
    add     s9, a5, s10
    vsetvli s1, zero, e64,m8,ta,mu
    vle64.v v8, (s9)
    add s1, a6, s10
    vle64.v v16, (s1)
    add     s1, a7, s10
    vle64.v v24, (s1)
    add     s1, s3, s10
    vle64.v v0, (s1)
    sd      a0, -112(s0)
    ld      a0, -128(s0)
    vs8r.v  v0, (a0) # Spill LMUL=8
    add     s9, t6, s10
    add     s11, t5, s10
    add     ra, t2, s10
    add     s1, t3, s10
    vle64.v v0, (s9)
    ld      s9, -136(s0)
    vs8r.v  v0, (s9) # Spill LMUL=8
    vle64.v v0, (s11)
    ld      s9, -144(s0)
    vs8r.v  v0, (s9) # Spill LMUL=8
    vle64.v v0, (ra)
    ld      s9, -160(s0)
    vs8r.v  v0, (s9) # Spill LMUL=8
    vle64.v v0, (s1)
    ld      s1, -152(s0)
    vs8r.v  v0, (s1) # Spill LMUL=8
    vadd.vv v16, v16, v8
    ld      s1, -128(s0)
    vl8r.v  v8, (s1) # Reload LMUL=8
    vadd.vv v8, v8, v24
    ld      s1, -136(s0)
    vl8r.v  v24, (s1) # Reload LMUL=8
    ld      s1, -144(s0)
    vl8r.v  v0, (s1) # Reload LMUL=8
    vadd.vv v24, v0, v24
    ld      s1, -128(s0)
    vs8r.v  v24, (s1) # Spill LMUL=8
    ld      s1, -152(s0)
    vl8r.v  v0, (s1) # Reload LMUL=8
    ld      s1, -160(s0)
    vl8r.v  v24, (s1) # Reload LMUL=8
    vadd.vv v0, v0, v24
    add     s1, a4, s10
    vse64.v v16, (s1)
    add     s1, s2, s10
    vse64.v v8, (s1)
    vadd.vv v8, v8, v16
    add     s1, t4, s10
    ld      s9, -128(s0)
    vl8r.v  v16, (s9) # Reload LMUL=8
    vse64.v v16, (s1)
    add     s9, t0, s10
    vadd.vv v8, v8, v16
    vle64.v v16, (s9)
    add     s1, t1, s10
    vse64.v v0, (s1)
    vadd.vv v8, v8, v0
    vsll.vi v16, v16, 1
    vadd.vv v8, v8, v16
    vse64.v v8, (s9)
    add     s6, s6, s7
    add     s10, s10, s8
    bne     s6, s4, .LBB0_4

If instead of using LMUL=1 for the 8-bit computation, the compiler is allowed to use a fractional LMUL=1/2, then the 64-bit computations can be performed using LMUL=4 (note that the same ratio of 64-bit elements and 8-bit elements is preserved as in the previous example). Now the compiler has 8 available registers to perform register allocation, resulting in no spill code, as shown in the loop below:

.LBB0_4:                                # %vector.body
                                        # =>This Inner Loop Header: Depth=1
    add     s9, a2, s6
    vsetvli s1, zero, e8,mf2,ta,mu // LMUL=1/2 !
    vle8.v  v25, (s9)
    add     s1, a3, s6
    vle8.v  v26, (s1)
    vadd.vv v25, v26, v25
    add     s1, a1, s6
    vse8.v  v25, (s1)
    add     s9, a5, s10
    vsetvli s1, zero, e64,m4,ta,mu // LMUL=4
    vle64.v v28, (s9)
    add     s1, a6, s10
    vle64.v v8, (s1)
    vadd.vv v28, v8, v28
    add     s1, a7, s10
    vle64.v v8, (s1)
    add s1, s3, s10
    vle64.v v12, (s1)
    add     s1, t6, s10
    vle64.v v16, (s1)
    add     s1, t5, s10
    vle64.v v20, (s1)
    add     s1, a4, s10
    vse64.v v28, (s1)
    vadd.vv v8, v12, v8
    vadd.vv v12, v20, v16
    add     s1, t2, s10
    vle64.v v16, (s1)
    add     s1, t3, s10
    vle64.v v20, (s1)
    add     s1, s2, s10
    vse64.v v8, (s1)
    add     s9, t4, s10
    vadd.vv v16, v20, v16
    add     s11, t0, s10
    vle64.v v20, (s11)
    vse64.v v12, (s9)
    add     s1, t1, s10
    vse64.v v16, (s1)
    vsll.vi v20, v20, 1
    vadd.vv v28, v8, v28
    vadd.vv v28, v28, v12
    vadd.vv v28, v28, v16
    vadd.vv v28, v28, v20
    vse64.v v28, (s11)
    add     s6, s6, s7
    add     s10, s10, s8
    bne     s6, s4, .LBB0_4